Microsporidia have the leanest genomes among eukaryotes, and their physiological and genomic simplicity has been attributed to their intracellular, obligate parasitic life-style. However, not all microsporidia genomes are small or lean, with the largest dwarfing the smallest ones by at least an order of magnitude. To better understand the evolutionary mechanisms behind this genomic diversification, we explore here two clades of microsporidia with distinct life histories, Ordospora and Hamiltosporidium, parasitizing the same host species, Daphnia magna. Based on seven newly assembled genomes, we show that mixed-mode transmission (the combination of horizontal and vertical transmission), which occurs in Hamiltosporidium, is found to be associated with larger and AT-biased genomes, more genes, and longer intergenic regions, as compared with the exclusively horizontally transmitted Ordospora. Furthermore, the Hamiltosporidium genome assemblies contain a variety of repetitive elements and long segmental duplications. We show that there is an excess of nonsynonymous substitutions in the microsporidia with mixed-mode transmission, which cannot be solely attributed to the lack of recombination, suggesting that bursts of genome size in these microsporidia result primarily from genetic drift. Overall, these findings suggest that the switch from a horizontal-only to a mixed mode of transmission likely produces population bottlenecks in Hamiltosporidium species, therefore reducing the effectiveness of natural selection, and allowing their genomic features to be largely shaped by nonadaptive processes.
Lacking a satisfactory screening test, ovarian cancer is frequently diagnosed at a late stage, leading to poor patient outcomes. This study investigated the diagnostic value of circulating tumor cells (CTCs) in peripheral blood from patients with suspected ovarian tumors. Sixty-one women suspected of having an ovarian mass were prospectively enrolled in this study. CTCs were identified and counted using microfluidic isolation and immunofluorescent staining of CD45, HE4, and epithelial and mesenchymal (E&M) markers (epithelial cell adhesion molecule, cytokeratins, and vimentin). Thirty (49%) of the patients were diagnosed with ovarian cancer. DAPI+/E&M+/CD45-/HE4+ CTC counts were higher in these patients than in patients with benign tumors (p = 0.016). The receiver operating characteristic (ROC) curve showed that the sensitivity of CTCs was 73.3%, which was superior to that of CA125 (56.7%). In patients with elevated CA125 levels (≥35 U/ml), CTC counts still showed good specificity (86.7%). Our findings suggest the DAPI+/E&M+/CD45-/HE4+ CTC count is a useful diagnostic indicator in patients with suspected ovarian cancer.
The increasing incidence of bladder cancer and its high rate of recurrence over a 5-year period necessitate the need for diagnosis and surveillance amelioration. Cystoscopy and urinary cytology are the current tools, and molecular techniques such as BTA stat, NMP22, survivin mRNA, and urovysion FISH have attracted attention; however, they suffer from insufficient sensitivity or specificity. We developed a novel microfluidic approach for harvesting intact urinary-exfoliated tumor cells (UETC), either individually or in clusters, in a clean and segregated environment, which is crucial to minimize crosscontamination and misreads. To reliably and accurately identify UETC, our quantitative immunoassay involved concurrent use of two oncoproteins CK20 and CD44v6 antigen. CK20 is an intermediate filament protein overexpressed in urothelial tumors, and CD44v6 is a membrane adhesion molecule closely associated with cell invasion, tumor progression, and metastatic spread. Single-cell whole-genome sequencing on 12 captured UETCs and copy number alteration analysis showed that 11/12 (91.7%) of the immunofluorescence-identified UETCs possessed genomic instability. A total of 79 patients with bladder cancer and 43 age-matched normal controls (NC) were enrolled in the study. We detected considerably higher UETC counts in patients with bladder cancer versus the NC group [53.3 (10.7-1001.9) vs. 0.0 (0-3.0) UETCs/10 mL; P < 0.0001]. For bladder cancer detection, a stratified 10-fold cross-validation of training data reveals an overall predictive accuracy of 0.84 [95% confidence interval (CI), 0.76-0.93] with an 89.8% (95% CI, 71.5%-86.4%) for sensitivity and 71.5% (95% CI, 59.7%-83.3%) for specificity. Overall, the microfluidic immunoassay demonstrates increased sensitivity and specificity compared with other techniques for the detection of bladder cancer.Significance: A unique and promising diagnostic assay for bladder cancer is proposed with potential clinical utility as a complement for cytology. Cancer Res; 78(14); 4073-85. Ó2018 AACR.
Background The evaluation for surgical resectability of pancreatic ductal adenocarcinoma (PDAC) patients is not only imaging-based but highly subjective. An objective method is urgently needed. We report on the clinical value of a phenotypic circulating tumor cell (CTC)-based blood test for a preoperative prognostic assessment of tumor metastasis and overall survival (OS) of PDAC patients. Methods Venous blood samples from 46 pathologically confirmed PDAC patients were collected prospectively before surgery and immunoassayed using a specially designed TU-chip™. Captured CTCs were differentiated into epithelial ( E ), mesenchymal and hybrid ( H ) phenotypes. A further 45 non-neoplastic healthy donors provided blood for cell line validation study and CTC false positive quantification. Findings A validated multivariable model consisting of disjunctively combined CTC phenotypes: “ H -CTC≥15.0 CTCs/2ml OR E -CTC≥11.0 CTCs/2ml” generated an optimal prediction of metastasis with a sensitivity of 1.000 (95% CI 0.889–1.000) and specificity of 0.886 (95% CI 0.765–0.972). The adjusted Kaplan-Meier median OS constructed using Cox proportional-hazard models and stratified for E -CTC < 11.0 CTCs/2 ml was 16.5 months and for E -CTC ≥ 11.0 CTCs/2 ml was 5.5 months (HR = 0.050, 95% CI 0.004–0.578, P = .016). These OS results were consistent with the outcome of the metastatic analysis. Interpretation Our work suggested that H -CTC is a better predictor of metastasis and E -CTC is a significant independent predictor of OS. The CTC phenotyping model has the potential to be developed into a reliable and accurate blood test for metastatic and OS assessments of PDAC patients. Fund National Natural Science Foundation of China; Zhejiang Province Science and Technology Program; China Scholarship Council.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.