Insulin gene expression is restricted to islet beta cells of the mammalian pancreas through specific control mechanisms mediated in part by specific transcription factors. The protein encoded by the pancreatic and duodenal homeobox gene 1 (PDX-1) is central in regulating pancreatic development and islet cell function. PDX-1 regulates insulin gene expression and is involved in islet cell-specific expression of various genes. Involvement of PDX-1 in islet-cell differentiation and function has been demonstrated mainly by 'loss-of-function' studies. We used a 'gain-of-function' approach to test whether PDX-1 could endow a non-islet tissue with pancreatic beta-cell characteristics in vivo. Recombinant-adenovirus-mediated gene transfer of PDX-1 to the livers of BALB/C and C57BL/6 mice activated expression of the endogenous, otherwise silent, genes for mouse insulin 1 and 2 and prohormone convertase 1/3 (PC 1/3). Expression of PDX-1 resulted in a substantial increase in hepatic immunoreactive insulin content and an increase of 300% in plasma immunoreactive insulin levels, compared with that in mice treated with control adenovirus. Hepatic immunoreactive insulin induced by PDX-1 was processed to mature mouse insulin 1 and 2 and was biologically active; it ameliorated hyperglycemia in diabetic mice treated with streptozotocin. These data indicate the capacity of PDX-1 to reprogram extrapancreatic tissue towards a beta-cell phenotype, may provide a valuable approach for generating 'self' surrogate beta cells, suitable for replacing impaired islet-cell function in diabetics.
Background: Disulfide bonds in 3 are involved in ␣IIb3 activation. Results: Disruptions of unique disulfide bonds in EGF domains of 3 yielded constitutively active ␣IIb3 and ␣v3 variably dependent on the presence of free sulfhydryls. Conclusion: Unique disulfide bonds regulate differently ␣IIb3 and ␣v3 function. Significance: The findings highlight the importance of unique disulfide bonds in the function of 3 integrins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.