The aim of the research was to study the features of formation of dairy equipment microflora, the ability of microorganisms to form biofilms on the noncorrosive steel surface with the different roughness and to determine the effectiveness of disinfectants. It was established, that bacteria of Bacillus, Lactobacillus genera of Enterobacteriaceae family are most often extracted from the dairy equipment after the sanitary processing by modern disinfectors, in less number of cases – staphylococci, enterococci, streptococci and pseudomonades. Extracted bacteria form mainly biofilms of the high and middle density. In 100 % of cases biofilms of the high density were formed by Bacillus spp. and Enterococcus faecalis bacteria. It indicates the fact that at the disinfection of the dairy equipment, only stable bacteria that have the ability to produce a biofilm of the high density, remain on its surface. It was established, that the dairy equipment surface relief, namely roughness, has an influence on the process of biofilm formation in Escherichia coli. On the noncorrosive steel surface with the roughness 0,16±0,065 mcm Escherichia coli form biofilms of the lower density comparing with the surface with the density 0,63–0,072 mcm during 24 hours at the temperature 17 °С. It was established, that working solutions of disinfectants P3-ansep CIP, Eco chlor, Medicarine and Maxidez were more effective as to plankton bacteria. Microorganisms, formed in biofilms, turned out stable to these disinfectants. Most effective disinfectant for the influence on bacteria on biofilms is Р3-oxonia active – 150. So, the obtained data indicate that for the effective sanitary processing of the dairy equipment it is necessary to use disinfectants that influence bacteria in biofilms.
Harpalus rufipes (De Geer, 1774) is a trans-palearctic, polyzonal, habitat generalist species, which is usually the most numerous ground beetle species in agricultural ecosystems and forest plantations. In laboratory conditions, 50 H. rufipes imagoes were placed in separate containers, each individual being fed over several days with seeds of a single species of plant, the total number of plant species being ten. Then the content of the beetles’ intestine were analyzed using Lugol’s iodine stain for visualizing starch granules. Native agents of ground seeds of plants and also of seeds treated by a fermentative agent from a mammalian pancreas were used for control. Granules of starch from seeds of Triticum aestivum L., Hordeum vulgare L. and Secale cereale L. were only insignificantly broken down by enzymes in the intestines of H. rufipes. The starch granules of Avena sativa L., Panicum miliaceum L., Sorghum drummondii (Steud.) Millsp. and Chase, Fagopyrum esculentum Moench and Sinapis arvensis L. were also insignificantly affected in the beetles’ intestine compared to the agent affected by enzymes of vertebrate animals. Starch granules of Beta vulgaris L. seeds affected by the enzymes became deformed and fragmented. Sometimes only their fragments remained. Seeds with a high content of fats such as seeds of Juglans regia L. were digested poorly in the intestine of H. rufipes (drops of fat could be seen surrounding certain food particles, which obstructed their digestion). The results of microscopic study of the intestinal content of mixed phytophage ground beetles of agricultural environments will help in identifying mechanisms of regulation of trophic chains by polyphage species, and will help advance the study of gregarine infection rates among ground beetles.
The article describes some probiotic properties of fermented product made of natural association of Tibetan kefir grains cultivated in Ukrainian household (UTKG); also, the effect of UTKG microbiota on the growth of pathogenic microbiota and sensitivity to antibiotics was studied. It was found that the test-cultures of oppurtunistic pathogens (, , and) were sensitive; bacteriostatic zone of the test-culture ranged from 21 to 25 mm, and highly sensitive ( and )acteriostatic zone exceeded 25 mm to probiotic bacteria of fermented product. UTKG microbiota is also moderately sensitive to multiple antibiotics that allows defining the obtained fermented milk product as functional with therapeutic properties. During the study of the influence of different NaCl and bile concentrations on acid-activity of UTKG it was found that active acid formation occurred at the concentrations up to 4% NaCl in cultivation medium (boiled milk) and at 20% bile and 0.45% phenol. It proves microbial association to be capable of withstanding adverse gastrointestinal conditions and continue developing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.