Benefits and risks of antimicrobial drugs, used in food-producing animals, continue to be complex and controversial issues. This review comprehensively presents the benefits of antimicrobials drugs regarding control of animal diseases, protection of public health, enhancement of animal production, improvement of environment, and effects of the drugs on biogas production and public health associated with antimicrobial resistance. The positive and negative impacts, due to ban issue of antimicrobial agents used in food-producing animals, are also included in the discussion. As a double-edged sword, use of these drugs in food-animals persists as a great challenge.
BackgroundMesenchymal stromal cells (MSCs) are a promising therapy for preventing chronic Graft-Versus-Host Disease (cGVHD) due to their potent immunomodulatory properties. However, the safety concerns regarding the use of MSCs remain unsolved, and conflicting effects are observed due to the heterogeneity of MSCs. Recently, exosomes were shown to mediate the paracrine effects of MSCs, making it a potential candidate for cell-free therapies. The aim of this study is to investigate the efficacy and safety of MSCs-derived exosomes (MSCs-exo) in an established cGVHD mouse model.MethodsBone marrow (BM)-derived MSCs were cultured, and the supernatants of these cultures were collected to prepare exosomes using ultracentrifugation. Exosomes from human dermal fibroblasts (Fib-exo) were used as a negative control. The cGVHD model was established, and tail vein injections of MSCs-exo or Fib-exo were administered once per week for 6 weeks. The symptoms and signs of cGVHD were monitored, and histopathological changes were detected by hematoxylin and eosin and Masson staining. The effects of MSCs-exo on Th17, Th1, and Treg were evaluated by flow cytometry, qPCR, and Luminex. In addition, human peripheral blood mononuclear cells (PBMCs) were stimulated and treated with MSCs-exo in vitro. IL-17-expressing Th17 and IL-10-expressing Treg were evaluated by flow cytometry, qPCR, and ELISA.ResultsWe found that MSCs-exo effectively prolonged the survival of cGVHD mice and diminished the clinical and pathological scores of cGVHD. Fibrosis in the skin, lung, and liver was significantly ameliorated by MSCs-exo application. In MSCs-exo treated mice, activation of CD4+ T cells and their infiltration into the lung were reduced. Of note, MSCs-exo exhibited potent immunomodulatory effects via the inhibition of IL-17-expressing pathogenic T cells and induction of IL-10-expressing regulatory cells during cGVHD. The expressions of Th17 cell-relevant transcription factors and pro-inflammatory cytokines was markedly reduced after MSCs-exo treatment. In vitro, MSCs-exo blocked Th17 differentiation and improved the Treg phenotype in PBMCs obtained from healthy donors and patients with active cGVHD, further indicating the regulatory effect of MSCs-exo on GVHD effector T cells.ConclusionsOur data suggested that MSCs-exo could improve the survival and ameliorate the pathologic damage of cGVHD by suppressing Th17 cells and inducing Treg. This finding provides a novel alternative approach for the treatment of cGVHD.Electronic supplementary materialThe online version of this article (10.1186/s13045-018-0680-7) contains supplementary material, which is available to authorized users.
Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival. Mechanical distension and mesenchymal-epithelial interactions play important roles in this process. We hypothesized that mechanical stretch simulating fetal breathing movements is an important regulator of pulmonary epithelial cell differentiation. Using a Flexercell Strain Unit, we analyzed effects of stretch on primary cultures of type II cells and cocultures of epithelial and mesenchymal cells isolated from fetal rat lungs during late development. Cyclic stretch of isolated type II cells increased surfactant protein (SP) C mRNA expression by 150 +/- 30% over controls (P < 0.02) on gestational day 18 and by 130 +/- 30% on day 19 (P < 0.03). Stretch of cocultures with fibroblasts increased SP-C expression on days 18 and 19 by 170 +/- 40 and 270 +/- 40%, respectively, compared with unstretched cocultures. On day 19, stretch of isolated type II cells increased SP-B mRNA expression by 50% (P < 0.003). Unlike SP-C, addition of fibroblasts did not produce significant additional effects on SP-B mRNA levels. Under these conditions, we observed only modest increases in cellular immunoreactive SP-B, but secreted saturated phosphatidylcholine rose by 40% (P < 0.002). These results indicate that cyclic stretch promotes developmentally timed differentiation of fetal type II cells, as a direct effect on epithelial cell function and via mesenchymal-epithelial interactions. Expression of the SP-C gene appears to be highly responsive to mechanical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.