This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Aichi Target 12 of the Convention on Biological Diversity (CBD) aims to ‘prevent extinctions of known threatened species’. To measure its success, we used a Delphi expert elicitation method to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993 - 2020 (the lifetime of the CBD) and 2010 - 2020 (the timing of Aichi Target 12). We found that conservation prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and 2–7 mammal extinctions since 2010. Many remain highly threatened, and may still become extinct in the near future. Nonetheless, given that ten bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions.
Both physical and non-physical barriers can restrict gene flow among seabird populations. Understanding the relative importance of non-physical barriers, such as breeding phenology, is key to understanding seabird biodiversity. We investigated drivers of diversification in the Leach's storm-petrel species complex (Hydrobates spp.) by examining population genetic structure across its range. Variation in the mitochondrial control region and six microsatellite loci was assayed in birds sampled from breeding colonies throughout the North Atlantic and North Pacific (H. leucorhoa leucorhoa), as well as from San Benito Islands (H. l. chapmani), and two seasonal populations in Guadalupe (summer breeding H. socorroensis and winter breeding H. cheimomnestes), Mexico. Weak but significant differentiation was found between populations of H. l. leucorhoa breeding in the Atlantic versus North Pacific, as well as between H. l. chapmani and H. l. leucorhoa, and between H. socorroensis and H. cheimomnestes within Guadalupe. In contrast, strong differentiation in both mitochondrial DNA and microsatellites was found between H. leucorhoa and both H. socorroensis and H. cheimomnestes. Phylogenetic reconstruction suggested the Guadalupe seasonal breeding populations are sister taxa, at least in their mitochondrial DNA. Non-physical barriers to gene flow appear to be more important than physical barriers in driving divergence within the Leach's storm-petrel species complex. In particular, allochronic speciation may have occurred between the seasonal populations within Guadalupe. Further work should include higher resolution sequencing to confirm results, and an increased sampling effort, particularly within the California area, to fully resolve the relationship between H. l. leucorhoa and H. l. chapmani.
Eradications of invasive rodents from tropical islands have a lower success rate compared to temperate islands. In the tropics the wide range of physical and biological conditions results in a wide variety of island biomes, with unique challenges and windows of opportunity for rodent eradications. We describe and compare research and operational details of six successful eradications of invasive mice Mus musculus and ship rats Rattus rattus carried out during 2011–2015. The work was conducted on six islands in two distinct tropical archipelagos in Mexico (one dry in the Gulf of Mexico; one wet in the Caribbean), and included the first eradication of rats from a mangrove-dominated island > 500 ha. Invasive rodent populations varied among species and islands, even neighbouring islands; overall density was higher on wet islands. Physical and biological features, including the presence of land crabs, determined eradication timing and rates of bait broadcast (higher on wet islands). An interval of 6–10 days between the two bait applications per island was sufficient to eradicate actively breeding mouse and rat populations. Impacts on non-target species were negligible, including those on wild and captive iguanas. Eradication success was rapidly confirmed based on ground monitoring and statistical modelling. Rodent eradications on larger tropical islands should be achievable with directed research to inform planning and implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.