Mercuric reductase is the important enzyme which catalyzes a reduction of a toxic Hg 2+ to non-toxic Hg 0 . The enzyme which has been potentially used as mercury bioremediation agent is produced by mercury resistant bacteria. These research aims are to determinate the resistance level of a local Bacillus sp to HgCl 2 in media, to determine the mercuric reductase activity from the bacteria, and to determine the biochemical properties of the mercuric reductase. The Bacillus sp was grown in the Nutrient Broth media with various of 0; 20; 40; 60; 120; and 160 µM HgCl 2 to know the response of the bacteria against mercury, The cell growth of Bacillus sp was measured by optical density (OD) method of at λ 600 nm. The mercuric reductase activity was assayed in the solution of MRA (Mercury Reductase Assay), then the oxidized NADPH was observed by the spectrophotometry method at λ340 nm. The result showed that the Bacillus sp has been resistant to media containing mercury at 120 µM, but the microbial growth was decreased by 50% in media containing mercury 80 µM. The Bacillus sp could produce highly the mercuric reductase enzyme at 16 hours of growth time with enzyme activity as 0.574 Unit/µg. The mercuric reductase from the bacteria has an optimum activity at pH 6 and temperature 37 °C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.