The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for ‘off-the-shelf’ manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Heat exchangers with unique specifications are administered in the food industry, which has expanded its sphere of influence even to the automotive industry due to this feature. It has been used for convenient maintenance and much easier cleaning. In this study, two different nanomaterials, such as Cu-based nanoparticles and an organic nanoparticle of Chloro-difluoromethane (R22), were used as nanofluids to enhance the efficiency of heat transfer in a turbulator. It is simulated by computational fluid dynamics software (Ansys-Fluent) to evaluate the Nusselt number versus Reynolds number for different variables. These variables are diameter ratio, torsion pitch ratio, and two different nanofluids through the shell tube heat exchanger. It is evident that for higher diameter ratios, the Nusselt number has been increased significantly in higher Reynolds numbers as the heat transfer has been increased in turbulators. For organic fluids (R22), the Nusselt number has been increased significantly in higher Reynolds numbers as the heat transfer has been increased in turbulators due to the proximity of heat transfer charges. At higher torsion pitch ratios, the Nusselt number has been increased significantly in the higher Reynolds number as the heat transfer has been increased in turbulators, especially in higher velocities and pipe turbulence torsions.
Working in intensive care units (ICUs) is stressful and potentially leads to various psycho-emotional disorders. Today, this issue represents a serious concern to the healthcare sector and affects the quality of healthcare provided. This study aimed to assess and compare the psycho-emotional state in COVID-19 and non-COVID-19 hospitals’ ICU healthcare workers (HCWs). From January to July 2021, we conducted an anonymous cross-sectional web survey of ICU physicians and nurses (N = 1259) of various hospitals in a metropolis with a population of over 10 million people. The statistical distributions of non-COVID-19 ICU HCWs showed the following results: emotional exhaustion levels (low 14.6%, average 30.8%, and high 54.6%); depersonalization levels (low 11.6%, average 16.5%, and high 71.9%); and reduced personal accomplishment levels (low 23.5%, average 40.3%, and high 36.2%). The statistical distributions of COVID-19 ICU HCWs showed the following results: emotional exhaustion levels (low 16.5%, average 31.5%, and high 52%); depersonalization levels (low 7.4%, average 9.4%, and high 83.1%); and reduced personal accomplishment levels (low 25.4%, average 45.4%, and high 29.1%). This study found a strong correlation between emotional exhaustion, aggression, and depersonalization in non-COVID-19 ICU HCWs and also found a correlation between their age, aggression, emotional exhaustion, and occupational stress.
Background: Endodontic treatment of various forms of pulpitis with variations of root canal system anatomy should be performed with high quality. The use of various antibacterial agents is aimed at maintaining the success of endodontic treatment. The aim of this study was to evaluate the penetration and fixation of the nano-silver solution on the dentinal surface during endodontic treatment. Materials and methods: the study was carried out on 70 extracted single-rooted teeth, randomly divided into two groups. In the teeth of the first group, the smear layer was removed after canal preparation with 17% EDTA solution; in the second group, the smear layer was not removed. In both groups, for the final treatment of the canal, a colloidal 1% solution of нанo серебра nanosilver was used. Samples were cut and prepared for analysis using micro-CT, scanning electron microscopy (SEM), X-ray microanalysis and energy dispersive spectrometry (elemental mapping). Results: in 100% of cases in groups of teeth with a preserved smear layer, the ability of a 1% colloidal solution of nanosilver with particles of 1–2 nm to be fixed on dentin with a removed and preserved smear layer and to leave a film on the dentinal surface was established. In the samples with removed smear layer, silver was found in 73.5% of cases. Conclusion: The nano-silver solution with a particle size of 1–2 nm proved its ability to penetrate the dentinal surfaces and create a final film covering the dentinal surface of the root canal before applying the sealer.
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.