The numerical approach for the coupled damage-creep modeling of concrete biological shield, which combines the current and the past knowledge regarding the effects of irradiation and temperature on concrete with the real measured and calculated neutron fluence and temperature distribution for VVER-440/213 reactors, is described in detail in this study. The proposed approach takes into account the real structural geometry as well as the real neutron fluence and temperature distribution and the latest knowledge about the effect of irradiation and temperature on concrete strength and stiffness. The radiation induced volumetric expansion and the thermal expansion of concrete are modeled. According to the results of the numerical simulation, the analyzed structure reaches critical damage within the time interval from 10.00 to 35.25 years of normal operation. The damage of the concrete biological shield of the VVER reactor will not affect the load-bearing function of the containment building, since the biological shield is self-bearing. The shielding properties of the biological shield may be reduced due to the appearance of the radial cracks, however, the concrete wall, which is situated right behind the biological shield, will ensure the necessary shielding. Therefore, the concrete biological shield of the VVER reactors can be considered as sacrificial structure and can be damaged without significant consequences. However, this study implies the importance of capability to predict the behavior of those PWR reactor biological shields which serve both the load-bearing and shielding purposes.
This paper describes the mechanism of radiation-induced deterioration of concrete and its components based on the literature review. The deterioration mechanism in different levels starting from the interaction between neutron and nucleus through the mineral metamictization and cement paste shrinkage up to the reduction of mechanical properties of concrete is explained in detail. All basic dependencies and patterns of volumetric change of minerals, aggregates, cement paste and finally concrete are also described in order to create a base for the future development of numerical models. Finally, the reduction of concrete mechanical properties is in correlation with its volumetric expansion. The radiation-induced volumetric expansion of concrete is affected by irradiation conditions (neutron fluence, neutron spectrum and temperature) and concrete composition (the amount, the proportion, the type and the structure of the minerals in the aggregate composition and the amount, the composition, the age and the structure of the cement paste).
The effect of gamma-ray irradiation on cement mortar properties is investigated in this study in order to understand the mechanism behind the strength and stiffness reduction, which may be significant according to the available researches. 60Co irradiation facility with the generating dose rate of 0.1–10 Gy/s and the total activity of 4.4·1015 Bq (120 kCi) was used to perform the irradiation, so that the total observed dose of the irradiated samples reached the values ranging from 12.0 to 15.0 MGy. An identical set of control samples was placed in the same laboratory conditions away from gamma radiation. The results of nanoindentation, X-ray diffraction analysis and mercury intrusion porosimetry of the irradiated and the control samples are shown and explained in detail in this study. The nanoindentation creep compliance and the nanoindentation elastic modulus of the irradiated and the control samples do not show any significant difference. The mineral composition obtained using the X-ray diffraction analysis of the irradiated and the control samples is also similar. The pore structure rearrangement and microcrack occurrence, which were evidenced by the mercury intrusion porosimetry and scanning electron microscopy, led to the porosity increase and may be attributed to the significant decrease of compressive strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.