Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling), means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.
Recent advances in fluorescent metal nanoclusters have spurred tremendous interest in nanomedicine due to the ease of fabrication, excellent biocompatibility, and, more importantly, excellent wavelength-dependent tunability. Herein, we report our findings on fluorescent BSA-protected gold nanoclusters (AuNCs), ∼2 nm in size conjugated with Herceptin (AuNCs-Her), for specific targeting and nuclear localization in ErbB2 over-expressing breast cancer cells and tumor tissue as a novel fluorescent agent for simultaneous imaging and cancer therapy. More interestingly, we found that AuNCs-Her could escape the endolysosomal pathway and enter the nucleus of cancer cells to enhance the therapeutic efficacy of Herceptin. We elucidate the diffusion characteristics (diffusion time and number of diffusers) and concentration of the fluorescing clusters in the nucleus of live cells. Our findings also suggest that the nuclear localization effect of AuNCs-Her enhances the anticancer therapeutic efficacy of Herceptin as evidenced by the induction of DNA damage. This study not only discusses a new nanomaterial platform for nuclear delivery of drugs but also provides important insights on nuclear targeting for enhanced therapy.
SERS labels are a new class of nanotags for optical detection based on Raman scattering. Central advantages include their spectral multiplexing capacity due to the small line width of vibrational Raman bands, quantification based on spectral intensities, high photostability, minimization of autofluorescence from biological specimens via red to near-infrared (NIR) excitation, and the need for only a single laser excitation line. Current concepts for the rational design and synthesis of SERS labels are summarized in this review. Chemical constituents of SERS labels are the plasmonically active metal colloids for signal enhancement upon resonant laser excitation, organic Raman reporter molecules for adsorption onto the metal surface for identification, and an optional protective shell. Different chemical approaches towards the synthesis of rationally designed SERS labels are highlighted, including also their subsequent bioconjugation.
Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.
The identification and timely detection of pathogenic bacteria is critical to ensuring safe food, health, and water. Although surface enhanced Raman scattering (SERS) methods have been used for pathogen characterization and single molecule sensing, the challenge of detecting pathogens in very low numbers using an optimal substrate that is sensitive and reproducible is still a challenge. In this report, we have developed and explored a novel SERS active substrate of 60-80 nm diameter through the assembly of Ag nanocrystals (AgNCs) into Ag nanospheres (AgNSs). A finite difference time domain (FDTD) analysis of the electromagnetic field produced by these structures and the enhancement factor calculations indicated that an enhancement of 10 8 was possible using the 633 or 785 nm excitation. The exact enhancement factors (EF) through the experimental results were calculated to be 2.47 × 10 7 , which is close to that obtained through the FDTD analysis. Preliminary characterization of the SERS substrate was demonstrated using various labels from the fluorescent dye and nonfluorescent small molecules. More importantly, these novel SERS active substrates when used for pathogenic bacteria detection could detect cells as few as 10 colony forming units/mL (CFU/ mL). Using canonical variate analysis (CVA) in conjunction with Raman spectra, differentiation of three key pathogens (E. coli O157, S. typhimurium, and S. aureus) including live and dead cells was also accomplished. With further optimization of the SERS substrate, single cell detection is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.