Background Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. Results Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. Conclusions Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.
BackgroundDe novo assembling of large genomes, such as in conifers (~ 12–30 Gbp), which also consist of ~ 80% of repetitive DNA, is a very complex and computationally intense endeavor. One of the main problems in assembling such genomes lays in computing limitations of nucleotide sequence assembly programs (DNA assemblers). As a rule, modern assemblers are usually designed to assemble genomes with a length not exceeding the length of the human genome (3.24 Gbp). Most assemblers cannot handle the amount of input sequence data required to provide sufficient coverage needed for a high-quality assembly.ResultsAn original stepwise method of de novo assembly by parts (sets), which allows to bypass the limitations of modern assemblers associated with a huge amount of data being processed, is presented in this paper. The results of numerical assembling experiments conducted using the model plant Arabidopsis thaliana, Prunus persica (peach) and four most popular assemblers, ABySS, SOAPdenovo, SPAdes, and CLC Assembly Cell, showed the validity and effectiveness of the proposed stepwise assembling method.ConclusionUsing the new stepwise de novo assembling method presented in the paper, the genome of Siberian larch, Larix sibirica Ledeb. (12.34 Gbp) was completely assembled de novo by the CLC Assembly Cell assembler. It is the first genome assembly for larch species in addition to only five other conifer genomes sequenced and assembled for Picea abies, Picea glauca, Pinus taeda, Pinus lambertiana, and Pseudotsuga menziesii var. menziesii.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2570-y) contains supplementary material, which is available to authorized users.
Background Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria , the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. Results Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica , A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. Conclusions Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara . We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5732-z) contains supplementary material, which is available to authorized users.
Information capacity of nucleotide sequences measures the unexpectedness of a continuation of a given string of nucleotides, thus having a sound relation to a variety of biological issues. A continuation is defined in a way maximizing the entropy of the ensemble of such continuations. The capacity is defined as a mutual entropy of real frequency dictionary of a sequence with respect to the one bearing the most expected continuations; it does not depend on the length of strings contained in a dictionary. Various genomes exhibit a multi-minima pattern of the dependence of information capacity on the string length, thus reflecting an order within a sequence. The strings with significant deviation of an expected frequency from the real one are the words of increased information value. Such words exhibit a non-random distribution alongside a sequence, thus making it possible to retrieve the correlation between a structure, and a function encoded within a sequence.
During Quaternary glaciations the ranges of Northern Eurasia forest biota species periodically experienced contraction followed by subsequent recolonizations in the interglacial intervals. However, unlike the broadleaf trees of temperate forests, taiga species seem not fully retreated to southern regions in unfavorable periods and possibly survived at mid-latitudes in multiple refugia. It is supported by this study of genetic variation of three mitochondrial DNA markers in 90 populations of Scots pine (Pinus sylvestris) located from Eastern Europe to Eastern Siberia. Geographic distribution of nine mitochondrial haplotypes (mitotypes) demonstrated the split between western and eastern populations approximately along the 38 th meridian. Genetic diversity in the western part was significantly higher than in the eastern one. 2 Six haplotypes were western-and two eastern-specific. One haplotype was common in both regions, but in the eastern part it occurred only in the South Urals and adjacent areas. The structure of the mitotype geographical distribution supports the hypothesis of the post-glacial recolonization of the studied territory from the European and Ural refugia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.