The presence of burrs on parts is not allowed in high-tech industries; there is a tendency to improve accuracy and quality and to reduce overall dimensions. A high proportion of operations are aimed at removing burrs in the labor intensity of release. Thermal pulse deburring machines are being developed and are applicable for deburring small-sized high-precision parts while providing additional processing conditions. A significant part of the electronic component base—coaxial radio components—is produced from beryllium bronze and the 29 NK alloy. It is not possible to prevent burr formation when cutting these materials. The conditions for deburring by the thermal pulse method are established in compliance with the requirements for deviations in the geometry of parts, for surface roughness and for ensuring maximum processing performance. These are restrictions on the thickness of the burr root, a variant of the arrangement of parts in the chamber of thermal impulse installation, which ensures the prevention of damage to parts during processing. Additionally, it provides access to a combustible mixture of all the surfaces of the parts; there is also a pressure value of the combustible mixture, depending on the characteristics of the thermal pulse installation, the total area of the treated surface, and the thermal conductivity of the materials for workpieces.
The increase in the share of physical and technical processing methods in the arsenal of deburring technologies used in modern production is associated both with the use of difficult-to-machine materials, such as beryllium bronze and the 29 NK alloy, and with the need to solve technological problems for the production of small-sized products with hard-to-reach surfaces. The aim of the study is to improve the processes of blade processing of small-sized parts made of beryllium bronze and the 29 NK alloy to provide rational conditions for thermal pulse deburring. Surface samples were experimentally obtained after turning in different modes on a CITIZEN CINCOM K16E-VII automatic lathe equipped with an Applitec micromechanics tool. The surface quality and burr characteristics were examined using a JEOL JIB-Z4500 electron microscope and a ContourGT-K optical profilometer. The program Statistica 6 allowed processing of the results. The relationship between the parameters of the turning mode and the thickness of the root of the burrs formed on the machined surface, the limitation of which is one of the conditions for the application of the thermal pulse method, was established. The obtained empirical regression dependencies establish a rational range of cutting mode parameters, and the implementation of the formulated recommendations for setting blade modes ensures deburring by the thermal pulse method in compliance with the requirements of drawing under maximum processing performance.
The aim of the work is to develop an energy-saving device that provides the conversion of thermal energy into electrical energy. The design and materials of the thermoelectric converter unit, consisting of 12 thermoelectric converter modules, a cooling radiator and a switching unit, were developed and selected. Based on the test results, the zone of the maximum temperatures in the section of the gas duct recommended for the installation of a gas cooling module using a thermoelectric converter was determined. The technology for cooling gases with the help of a thermoelectric converter was tested on the site located in front of the experimental heat exchanger. An assessment of the efficiency of the conversion of heat into electrical energy was conducted using the design of the thermoelectric converter unit, based on thermoelectric modules TGM 127-1.4-1.2. It was determined that the device is capable of generating electricity stably for production needs. The data obtained showed that, at a temperature difference of 75–80 °C between the wall surface of the gas duct section and the coolant, the power of one thermoelectric converter block of the gas cooling system reaches 9 W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.