Abstract:As the height of the building increases, loads on load-carrying structures increase dramatically, and as a result of the development of highrise construction, several structural systems of such buildings have been developed: frame, frame-frame, cross-wall, barrel, box-type, box-to-wall ("pipe in pipe", "Trumpet in the farm"), etc. In turn, the barrel systems have their own versions: cantilever support of the ceilings on the trunk, suspension of the outer part of the overlap to the upper carrying console "hanging house" or its support by means of the walls on the lower bearing cantilever, intermediate position of the supporting cantilevers in height to the floor, from a part of floors. The object of the study are the structural solutions of high-rise buildings. The subject of the study is the layout of structural schemes of high-rise buildings, taking into account the main parameters -altitude (height), natural climatic conditions of construction, materials of structural elements and their physical and mechanical characteristics. The purpose of the study is to identify the features and systematization of structural systems of high-rise buildings and the corresponding structural elements. The results of the research make it possible, at the stage of making design decisions, to establish rational parameters for the correspondence between the structural systems of highrise buildings and their individual elements.
The purpose of monitoring the technical condition of high-rise buildings is to prevent possible negative situations leading to significant socio-economic losses by timely warning of the emergence of such situations. To achieve this goal, it is necessary to solve the following main tasks, such as: identifying the time and place of origin and development of negative processes that lead to the emergence of an emergency situation; analysis of the possible development of the situation in time; development of management decisions; formation and submission of warning signals; obtaining new knowledge about the operation of the object, the factors of influence on this object, the speed of development of destructive processes. When solving the above problems, an important role is played by constructing an adequate mathematical model of the object, the parameters of which should be calibrated according to the current monitoring results.
Reinforced concrete structures play an increasing important role in civil and industrial construction, along with the technology of new concrete materials and their calculation theories. In order to improve the crack resistance of three-layer reinforced concrete (3L-RC) beams with the middle layer of lightweight concrete (LWC) material, the method of using polymer bars in place of steel bars is applied. In this study, the behavior of 3L-RC beams with steel bars and glass fiber reinforced polymer (GFRP) bars is simulated and analyzed by ANSYS software (base on the finite element analysis). The simulation of reinforced concrete (RC) beam work on computer software is a modern method, which allows to input many mechanical, physical properties of materials and geometric parameters of 3L-RC beams. The results of the samples beam analysis showed that the cracking resistance of 3L-RC beams with GFRP bars have been enhanced more than twice compared to 3L-RC beams with steel bars. Numerical modeling allows comparison between the obtained results and building theoretical dependences in a wide range of specified parameters in sectional construction of multilayer reinforced concrete elements. This would limit the number of actual test samples, increase the efficiency of experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.