Oligomerization of tau is a key process contributing to the progressive death of neurons in Alzheimer's disease. Tau is modified by O-linked N-acetylglucosamine (O-GlcNAc), and O-GlcNAc can influence tau phosphorylation in certain cases. We therefore speculated that increasing tau O-GlcNAc could be a strategy to hinder pathological tau-induced neurodegeneration. Here we found that treatment of hemizygous JNPL3 tau transgenic mice with an O-GlcNAcase inhibitor increased tau O-GlcNAc, hindered formation of tau aggregates and decreased neuronal cell loss. Notably, increases in tau O-GlcNAc did not alter tau phosphorylation in vivo. Using in vitro biochemical aggregation studies, we found that O-GlcNAc modification, on its own, hinders tau oligomerization. O-GlcNAc also inhibits thermally induced aggregation of an unrelated protein, TAK-1 binding protein, suggesting that a basic biochemical function of O-GlcNAc may be to prevent protein aggregation. These results also suggest O-GlcNAcase as a potential therapeutic target that could hinder progression of Alzheimer's disease.
The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition.
The microtubule-associated protein tau is known to be post-translationally modified by the addition of N-acetyl-D: -glucosamine monosaccharides to certain serine and threonine residues. These O-GlcNAc modification sites on tau have been challenging to identify due to the inherent complexity of tau from mammalian brains and the fact that the O-GlcNAc modification typically has substoichiometric occupancy. Here, we describe a method for the production of recombinant O-GlcNAc modified tau and, using this tau, we have mapped sites of O-GlcNAc on tau at Thr-123 and Ser-400 using mass spectrometry. We have also detected the presence of a third O-GlcNAc site on either Ser-409, Ser-412, or Ser-413. Using this information we have raised a rabbit polyclonal IgG antibody (3925) that detects tau O-GlcNAc modified at Ser-400. Further, using this antibody we have detected the Ser-400 tau O-GlcNAc modification in rat brain, which confirms the validity of this in vitro mapping approach. The identification of these O-GlcNAc sites on tau and this antibody will enable both in vivo and in vitro experiments designed to understand the possible functional roles of O-GlcNAc on tau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.