We present an analysis of existence, uniqueness, and smoothness of the solution to a class of fractional ordinary differential equations posed on the whole real line that models a steady state behavior of a certain anomalous diffusion, advection, and reaction. The anomalous diffusion is modeled by the fractional Riemann-Liouville differential operators. The strong solution of the equation is sought in a Sobolev space defined by means of Fourier Transform. The key component of the analysis hinges on a characterization of this Sobolev space with the Riemann-Liouville derivatives that are understood in a weak sense. The existence, uniqueness, and smoothness of the solution is demonstrated with the assistance of several tools from functional and harmonic analyses.
This paper investigates the structure of solutions to the BVP of a class of fractional ordinary differential equations involving both fractional derivatives (R-L or Caputo) and fractional Laplacian with variable coefficients. This family of equations generalize the usual fractional diffusion equation and fractional Laplace equation.
We provide a deep insight to the structure of the solutions shared by this family of equations. The specific decomposition of the solution is obtained, which consists of the “good” part and the “bad” part that precisely control the regularity and singularity, respectively. Other associated properties of the solution will be characterized as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.