Engineers and researchers have recently paid attention to Blockchain. Blockchain is a fault-tolerant distributed ledger without administrators. Blockchain is originally derived from cryptocurrency, but it is possible to be applied to other industries. Transferring digital asset is called a transaction. Blockchain holds all transactions, so the total amount of Blockchain data will increase as time proceeds. On the other hand, the number of Internet of Things (IoT) products has been increasing. It is difficult for IoT products to hold all Blockchain data because of their storage capacity. Therefore, they access Blockchain data via servers that have Blockchain data. However, if a lot of IoT products access Blockchain network via servers, server overloads will occur. Thus, it is useful to reduce workloads and improve throughput. In this paper, we propose a caching technique using a Field Programmable Gate Array-based (FPGA) Network Interface Card (NIC) which possesses four 10Gigabit Ethernet (10GbE) interfaces. The proposed system can reduce server overloads, because the FPGA NIC instead of the server responds to requests from IoT products if cache hits. We implemented the proposed hardware cache to achieve high throughput on NetFPGA-10G board. We counted the number of requests that the server or the FPGA NIC processed as an evaluation. As a result, the throughput improved by on average 1.97 times when hitting the cache.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.