Key Points
Mutant CALR induces TPO-independent growth in the human megakaryocytic cell line UT-7/TPO. Mutant CALR binds to the TPO receptor, inducing phosphorylation of JAK2 and activating downstream signaling.
Studies have previously shown that mutant calreticulin (CALR), found in a subset of patients with myeloproliferative neoplasms (MPNs), interacts with and subsequently promotes the activation of the thrombopoietin receptor (MPL). However, the molecular mechanism behind the activity of mutant CALR remains unknown. Here we show that mutant, but not wild-type, CALR interacts to form a homomultimeric complex. This intermolecular interaction among mutant CALR proteins depends on their carboxyl-terminal domain, which is generated by a unique frameshift mutation found in patients with MPN. With a competition assay, we demonstrated that the formation of mutant CALR homomultimers is required for the binding and activation of MPL. Since association with MPL is required for the oncogenicity of mutant CALR, we propose a model in which the constitutive activation of the MPL downstream pathway by mutant CALR multimers induces the development of MPN. This study provides a potential novel therapeutic strategy against mutant CALR-dependent tumorigenesis via targeting the intermolecular interaction among mutant CALR proteins.
Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.