Familial adenomatous polyposis coli (FAP) is a disease characterized by the development of multiple colorectal adenomas, and affected individuals carry germline mutations in the APC gene. With the use of a conditional gene targeting system, a mouse model of FAP was created that circumvents the embryonic lethality of Apc deficiency and directs Apc inactivation specifically to the colorectal epithelium. loxP sites were inserted into the introns around Apc exon 14, and the resultant mutant allele (Apc580S) was introduced into the mouse germline. Mice homozygous for Apc580S were normal; however, upon infection of the colorectal region with an adenovirus encoding the Cre recombinase, the mice developed adenomas within 4 weeks. The adenomas showed deletion of Apc exon 14, indicating that the loss of Apc function was caused by Cre-loxP-mediated recombination.
A recombinant adenovirus (Ad) expressing Cre recombinase derived from bacteriophage P1 was constructed. To assay the Cre activity in mammalian cells, another recombinant Ad bearing an on/off-switching reporter unit, where a LacZ-expression unit can be activated by the Cre-mediated excisional deletion of an interposed stuffer DNA, was also constructed. Co-infection experiments together with the Cre-expressing and the reporter recombinant Ads showed that the Cre-mediated switching of gene expression was detected in nearly 100% of cultured CV1, HeLa and Jurkat cells. These results suggest that the recombinant Ad efficiently expressed functional Cre and offers a basis for establishing a powerful on/off switching strategy of gene expression in cultured mammalian cells and presumably in transgenic animals. The method is also applicable to construction of recombinant Ad bearing a gene the expression of which is deleterious to propagation of recombinant Ad.
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-κB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (RasDN), constitutively active MEK1 (MEKCA), dominant negative IκB kinase 2 (IKKDN), and constitutively active IKK2 (IKKCA). Inhibiting ERK activity by RasDN overexpression rapidly induced the apoptosis of osteoclast-like cells (OCLs) formed in vitro, whereas ERK activation after the introduction of MEKCA remarkably lengthened their survival by preventing spontaneous apoptosis. Neither inhibition nor activation of ERK affected the bone-resorbing activity of OCLs. Inhibition of NF-κB pathway with IKKDN virus suppressed the pit-forming activity of OCLs and NF-κB activation by IKKCA expression upregulated it without affecting their survival. Interleukin 1α (IL-1α) strongly induced ERK activation as well as NF-κB activation. RasDN virus partially inhibited ERK activation, and OCL survival promoted by IL-1α. Inhibiting NF-κB activation by IKKDN virus significantly suppressed the pit-forming activity enhanced by IL-1α. These results indicate that ERK and NF-κB regulate different aspects of osteoclast activation: ERK is responsible for osteoclast survival, whereas NF-κB regulates osteoclast activation for bone resorption.
SUMMARY:Recently, the adenovirus expression vector attracts much attention for the application to gene therapy and the method to purify and concentrate adenovirus without loss of infectivity has become very important, especially for animal experiments and gene therapy of humans.In this report, we show a simple and efficient method for purifying infectious adenovirus. The method consists of sequential centrifugation in CsCl step gradients without loss of infectivity and can be completed in one day. The method maintained the viral infectivity after 10-fold concentration and seemed to remove more than 99.9% of carried-over proteins. We showed also that the buffers for dialyzing the purified virions influenced the stability of infectivity.The buffers of 10 mM HEPES-1 mM EDTA -10% glycerol and PBS (-)-10% glycerol resulted in higher stability than did 10 mM HEPES-1 mM MgC12-10% glycerol. The method is may be useful in many applications of recombinant adenovirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.