The unpleasantness of itching is reduced by cooling. Although previous research suggests the presence of a central itch modulation system, there is little documentation about the modulation system in the brain. In the present study, we investigated the modulating system of the itching sensation in human brains using positron emission tomography and H(2) (15)O. The significant increases of regional cerebral blood flow caused by histamine stimuli using iontophoresis were observed in the anterior cingulate cortex (BA24), the thalamus, the parietal cortex (BA40 and BA7), the dorsolateral prefrontal cortex (BA46) and the premotor cortex (BA6). We did not observe any changes in the secondary somatosensory cortex (S2) during the itching stimulus, corresponding to the previous imaging studies concerning itching. Activation in these areas related to itching stimuli was decreased by a simultaneous stimulation of itching and cold pain (the dual stimuli), as compared to itching alone. Interestingly, the midbrain, including periaqueductal gray matter (PAG), was only activated during the dual stimuli. PAG is well known to be a modulating noxious stimulus. Here we hypothesize that the activation of PAG may also be related to the itch modulation. These findings indicate that the modified brain activities in the PAG, the cingulate, the frontal and the parietal cortex might be associated with the itch modulation in the central nervous system and that the S2 might not be primarily involved in processing the itching perception in the brain since the activity of S2 was not observed in any concentration of itching stimuli.
Histamine H1-receptor (H1R) antagonists, or antihistamines, often induce sedative side effects when used for the treatment of allergic disorders. This study compared the sedative profiles of the second-generation antihistamines, fexofenadine and cetirizine, using 3 different criteria: subjective sleepiness evaluated by the Stanford Sleepiness Scale, objective psychomotor tests (simple and choice reaction time tests and visual discrimination tests at 4 different exposure durations), and measurement of histamine H1-receptor occupancy (H1RO) in the brain. Subjective sleepiness and psychomotor performance were measured in 20 healthy Japanese volunteers at baseline and 90 min after administration of fexofenadine 120 mg or cetirizine 20 mg in a double-blind, placebo-controlled crossover study. Hydroxyzine 30 mg was included as a positive control. H1RO was measured using positron emission tomography (PET) with (11)C-doxepin in 12 of the 20 subjects, and a further 11 volunteers were recruited to act as controls. In psychomotor tests, fexofenadine was not significantly different from placebo and significantly less impairing than cetirizine on some tasks, as well as significantly less impairing than hydroxyzine on all tasks. For subjective sleepiness, fexofenadine was not significantly different from placebo, whereas cetirizine showed a trend toward increased sleepiness compared with fexofenadine and placebo. H1RO was negligible with fexofenadine (-0.1%) but moderately high with cetirizine (26.0%). In conclusion, fexofenadine 120 mg is distinguishable from cetirizine 20 mg, as assessed by H1RO and psychomotor testing.
Brain histamine H 1 receptor occupancy of orally administered antihistamines measured by positron emission tomography with 11 C-doxepin in a placebocontrolled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen
AimsThe strength of sedation due to antihistamines can be evaluated by using positron emission tomography (PET). The purpose of the present study is to measure histamine H 1 receptor (H 1 R) occupancy due to olopatadine, a new second-generation antihistamine and to compare it with that of ketotifen.
MethodsEight healthy males (mean age 23.5 years-old) were studied following single oral administration of olopatadine 5 mg or ketotifen 1 mg using PET with 11 C-doxepin in a placebo-controlled crossover study design. Binding potential ratio and H 1 R occupancy were calculated and were compared between olopatadine and ketotifen in the medial prefrontal (MPFC), dorsolateral prefrontal (DLPFC), anterior cingulate (ACC), insular (IC), temporal (TC), parietal (PC), occipital cortices (OC). Plasma drug concentration was measured, and correlation of AUC to H 1 R occupancy was examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.