The organic cation transporter (OCT) mediates translocation of various cationic molecules including drugs, toxins and endogenous substances. We examined gender differences in the expression of rat (r) OCT2 in the kidney. Slices and basolateral membrane vesicles of male rat kidney showed a higher transport activity for tetraethylammonium than those of female rat kidney. The expression levels of rOCT2 mRNA and protein in the kidney of males were much higher than those in females. There was no gender difference in mRNA expression of rOCT1 and rOCT3. These findings suggest that rOCT2 is responsible for the gender differences in renal basolateral membrane organic cation transport activity.z 1999 Federation of European Biochemical Societies.
Rat (r) OCT2 was identified as the second member of the organic cation transporter (OCT) family, and is predominantly expressed in the kidney. We reported previously that rOCT2 was responsible for the gender differences in renal basolateral membrane organic cation transport activity. As renal rOCT2 expression in males is much higher than that in females, we hypothesized that rOCT2 expression may be under the control of sex hormones. Treatment of male and female rats with testosterone significantly increased the expression levels of rOCT2 mRNA and protein in the kidney, whereas estradiol treatment moderately decreased the expression levels of rOCT2. There was no regulation of renal rOCT1 mRNA expression by testosterone or estradiol. Treatment of male and female rats with testosterone significantly stimulated the tetraethylammonium (TEA) accumulation by renal slices, whereas estradiol treatment caused a decrease in the TEA accumulation by slices from male but not female rats. The present findings suggested that testosterone up-regulates renal rOCT2 expression and estradiol moderately down-regulates rOCT2.z 2000 Federation of European Biochemical Societies.
Abstract. A cDNA coding a novel organic cation transporter, hOCT2-A, was isolated from human kidney. The hOCT2-A cDNA is an alternatively spliced variant of hOCT2 with an insertion of 1169 bp. The open reading frame encodes a 483-amino acid protein that has 81% amino acid identity with hOCT2. From hydropathy analysis, hOCT2-A is predicted to have nine transmembrane domains. hOCT2-A mRNA is expressed mainly in kidney and weakly in brain, liver, colon, skeletal muscle, bone marrow, spinal cord, testis, and placenta. When expressed in HEK293 cells, hOCT2-A stimulated the uptake of tetraethylammonium (TEA) in an electrogenic manner. The transport of TEA by hOCT2-A-transfected cells was saturable with the apparent Km value of 63 M. hOCT2-A stimulated the uptake of TEA, 1-methyl-4-phenylpyridinium, and cimetidine as well as did hOCT2. The uptake of guanidine and choline by hOCT2-transfected cells also increased markedly but not that by hOCT2-A-transfected cells. The uptake of TEA mediated by hOCT2-A but not by hOCT2 was inhibited significantly by organic cations such as procainamide, Nacetylprocainamide, and levofloxacin, indicating that hOCT2-A differs from hOCT2 in its affinity for several compounds. These findings suggested that hOCT2-A contributes to the renal clearance of endogenous and exogenous organic cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.