This paper proposes a meta-modeling workflow to forecast the cooling and heating loads of buildings at individual and district levels in the early design stage. Seven input variables, with large impacts on building loads, are selected for designing meta-models to establish the MySQL database. The load profiles of office, commercial, and hotel models are simulated with EnergyPlus in batches. A sequence-to-sequence (Seq2Seq) model based on the deep-learning method of a one-dimensional convolutional neural network (1D-CNN) is introduced to achieve rapid forecasting of all-year hourly building loads. The method performs well with the load effective hour rate (LEHR) of around 90% and MAPE less than 10%. Finally, this meta-modeling workflow is applied to a district as a case study in Shanghai, China. The forecasting results well match the actual loads with R2 of 0.9978 and 0.9975, respectively, for the heating and cooling load. The LEHR value of all-year hourly forecasting loads is 98.4%, as well as an MAPE of 4.4%. This meta-modeling workflow expands the applicability of building-physics-based methods and improves the time resolution of conventional data-driven methods. It shows small forecasting errors and fast computing speed while meeting the required precision and convenience of engineering in the building early design stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.