MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that down-regulate the expression of target genes in a sequence-dependent manner. Recent studies indicated that miRNAs are mechanistically involved in the regulation of the mammalian corpus luteum (CL). However, few studies have profiled the different miRNA expression patterns in bovine non-regressed and regressed CL. In this study, miRNA microarray was employed to investigate the different miRNA expression patterns in bovine CL. Among the 13 differentially expressed miRNAs, seven were preferentially expressed in non-regressed CL, while six miRNAs were more highly expressed in regressed CL. Real-time RT-PCR was used to validate the microarray results. Mir-378 miRNA, known to be associated with apoptosis, was 8.54-fold (P < 0.01) up-regulated in non-regressed CL, and the interferon gamma receptor 1 (IFNGR1) gene, which potentially plays a role in apoptosis of the luteal cell, was predicted to be the target of mir-378. The results of real-time RT-PCR of mir-378 and western blot analysis of the IFNGR1 protein at different stages of CL development showed that mir-378 decreased the expression of IFNGR1 protein but not IFNGR1 mRNA. Taken together, our data support a direct role for miRNA in apoptosis of bovine CL.
BackgroundChina exhibits a great diversity of ecosystems and abundant cattle resources, with nearly 30 million cattle from 53 indigenous breeds reared in specific geographic regions. To explore the genetic diversity and population structure of Chinese indigenous cattle, a population genetic analysis at both the individual and population levels was conducted and the admixture analysis was performed. We genotyped 572 samples from 20 Chinese indigenous cattle breeds using GeneSeek Genomic Profiler Bovine LD (GGP-LD, 30 K) and downloaded the published data of 77 samples from 4 worldwide commercial breeds genotyped with Illumina BovineSNP50 Beadchip (SNP50, 50 K).ResultsIn principal component analysis (PCA) and neighbour-joining (NJ) tree analysis, samples of the same breeds were grouped together, leading to clear separation from other breeds. And Chinese indigenous cattle were clustered into two groups of southern and northern breeds, originated from Asian Bos indicus lineage and Eurasian Bos taurus lineage, respectively. In STRUCTURE K = 2, a clear transition occurred from the northern breeds to the southern breeds. Additionally, the northern breeds contained a smaller Eurasian taurine (62.5%) descent proportion than that reported previously (more than 90%). In STRUCTURE K = 3, a distinct descent was detected in the southern Chinese breeds, which could reflect a long-term selection history of Chinese indigenous cattle. The results from TreeMix and f3 statistic provided the evidence of an admixture history between southern breeds and northern breeds.ConclusionsConsistent with the observed geographical distributions, Chinese indigenous cattle were divided into two genetic clusters, northern indigenous cattle and southern indigenous cattle. Three improved breeds in the northern area also exhibited northern indigenous ancestry. We found that the breeds distributed in the northern China showed more southern lineage introgression than previously reported. Central-located populations appeared to the admixture between southern and northern lineages, and introgression events from European cattle were observed in Luxi Cattle, Qinchuan Cattle and Jinnan Cattle. The study revealed the population structures and levels of admixture pattern among Chinese indigenous cattle, shedding light on the origin and evolutionary history of these breeds.Electronic supplementary materialThe online version of this article (10.1186/s12863-018-0705-9) contains supplementary material, which is available to authorized users.
MicroRNA (miRNA) is an important regulator of cell differentiation and function. Mechanical strain is important in the growth and differentiation of osteoblasts. Therefore, mechanresponsive miRNA may be important in the response of osteoblasts to mechanical strain. The purpose of the present study was to select and identify the mechanoresponsive miRNAs of osteoblasts. Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with a mechanical tensile strain of 2,50 με at 0.5 Hz, and the activity of alkaline phosphatase (ALP), mRNA levels of ALP, osteocalcin (OCN), and collagen type I (Col I), and protein levels of bone morphogenetic proteins (BMPs) in the cell culture medium were assayed. Following miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the mechanically strained cells and unstrained cells were selected and identified. Using bioinformatics analysis, the target genes of the miRNAs were then predicted. The results revealed that the mechanical strain of 2,500 με increased the activity of ALP, the mRNA levels of ALP, OCN and Col I, and the protein levels of bone morphogenetic protein(BMP)-2 and BMP-4 Continuous mechanical stimulation for 8 h had the most marked stimulant effects. miR-218, miR-191*, miR-3070a and miR-33 were identified as differentially expressed miRNAs in the mechanically strained MC3T3-E1 cells. Certain target genes of these four miRNAs were involved in osteoblastic differentiation. These findings indicated that a mechanical strain of 2,500 με, particularly for a period of 8 h, promoted osteoblastic differentiation, and the four mechanoresponsive miRNAs identified may be a potential regulator of osteoblastic differentiation and their response to mechanical strain.
Yanbian cattle is inhabitant of North of China, exhibiting many phenotypic features, such as long, dense body hair, and abundant intramuscular fat, designed to combat the extreme cold climate adaption. In the current study, we studied the cold tolerance of nine Yanbian cattle by whole genome resequencing and compared with African tropical cattle, N'Dama, as a control group. Yanbian cattle was aligned to the Bos taurus reference genome (ARS-UCD1.2) yielding an average of 10.8 fold coverage. The positive selective sweep analysis for the cold adaption in Yanbian cattle were analyzed using composite likelihood ratio (CLR) and nucleotide diversity (qp), resulting in 292 overlapped genes. The strongest selective signal was found on BTA16 with potential mutation in CORT gene, a regulatory gene of primary hormone in the hypothalamic-pituitary-adrenal (HPA) axis, is reported to be associated with the cold stress, representedfour missense mutations (c.269C > T, p.Lys90Ile; c.251A > G, p.Glu84Gly; c.112C > T, p.Pro38Ser; c.86G > A, p.Pro29His). Meanwhile another gene on BTA6, showed significantly higher selective sweep signals for a cold adapted trait for hair follicle and length development, FGF5 (fibroblast growth factor 5) with a missense mutation (c.191C > T, p.Ser64Phe). Moreover, cold adapted Yanbian cattle was statistically compared with the hot adapted N'Dama cattle, a taurine cattle reported to show superior heat tolerance than zebu cattle, making them better adapted to the hot regions of Africa. XP-CLR, Fst, and qp ratio were used to compare both breeds, yielding 487, 924, and 346 genes respectively. Among the 12 overlapped genes, (CD36) (c.638A > G, p.Lys 213Arg) involved in fat digestion and absorption plays an important role in membrane transport of long-chain fatty acid and its expression could increase in cold exposure. Henceforth, our study provides a novel genetic insights into the cold climate adaptation of Yanbian cattle and identified three candidate genes (CORT, FGF5, and CD36), which can add to an understanding of the cold climate adaptation of Yanbian cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.