Attempts to create metal-organic frameworks (MOFs) with zeolitic topologies, metal (zinc(II) and cobalt(II)) imidazolates have repeatedly been used as the metal-organic motifs of inorganic silicate analogues. By modulating the synthetic strategy based on the solvothermal and liquid diffusion method, seven further MOFs (including at least three zeolitic MOFs) of zinc(II) imidazolates, [Zn(im)2.x G] (G=guest molecule, x=0.2-1) 1 a-7 a, have been successfully synthesized. Of these, 1 a-3 a are isostructural with the previously reported cobalt analogues 1 b-3 b, respectively, while 4 a-7 a are new members of the metal imidazolate MOF family. Complex 4 a exhibits a structure related to silicate CaAl2Si2O8 of CrB4 topology, but with a higher network symmetry; complex 5 a has a structure with zeolitic DFT topology that was discovered in zeolite-related materials of DAF-2, UCSB-3, and UCSB-3GaGe; complex 6 a demonstrates an unprecedented zeolite-like topology with one dimensional channels with 10-rings; and 7 a displays a structure of natural zeolite GIS (gismondine) topology. All of these polymorphous MOFs were created only by using certain solvents as structure-directing agents (SDAs). Further extensive metal-organic frameworks with zeolitic topologies can be envisaged if other solvents were to be used.
Bimetallic organic frameworks (Bi-MOFs) have been recognized as one of the most ideal precursors to construct metal oxide semiconductor (MOS) composites, owing to their high surface area, various chemical structures, and easy removal of the sacrificial MOF scaffolds through calcination. Herein, we synthesized Zn/Ni Bi-MOF for the first time via a facile ion exchange postsynthetic strategy, formed a three-dimensional framework consisting of infinite one-dimensional chains that is unattainable through the direct solvothermal approach, and then transformed the Zn/Ni Bi-MOF into a unique ZnO/NiO heterostructure through calcination. Notably, the obtained sensor based on a ZnO/NiO heterostructure exhibits an ultrahigh response of 280.2 toward 500 ppm n-propanol at 275 °C (17.2fold enhancement compared with that of ZnO), remarkable selectivity, and a limit of detection of 200 ppb with a notable response (2.51), which outperforms state-of-the-art n-propanol sensors. The enhanced n-propanol sensing properties may be attributed to the synergistic effects of several points including the heterojunction at the interface between the NiO and ZnO nanoparticles, especially a one-dimensional chain MOF template structure as well as the chemical sensitization effect of NiO. This work provides a promising strategy for the development of a novel Bi-MOF-derived MOS heterostructure or homostructure with well-defined morphology and composition that can be applied to the fields of gas sensing, energy storage, and catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.