Ginkgolic acids may induce malignant cell death via the B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 apoptosis pathway. Concurrently, apoptosis, autophagy and mitochondrial dysfunction may also be involved in bringing about this endpoint. The anticancer effect of Ginkgolic acids (GAs) was investigated using the HepG2 cell line. The median lethal dose of the GAs of the HepG2 was measured via an MTT assay, the dose-response curves were evaluated and changes in cell morphology were monitored by microscopy. Autophagy in HepG2 cells was down regulated using 3-methyladenine (3-MA) or Beclin-1-specific small interfering RNA (siRNA) and the expression of apoptosis associated proteins caspase-3, Bax/Bcl-2, and the autophagy-associated protein 5 and microtubule-associated protein 1A/1B-light chain 3 in the GA-treated HepG2 cells were all measured by western blot analysis. The level of apoptosis in the GA-treated cells was also assessed using terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) assay, and the mitochondrial membrane potential (Δψm) was detected by immunofluorescence. The results of the MTT and TUNEL assays indicated that the proliferation of HepG2 cells treated with GAs was significantly reduced compared with the control group, and the rate of the inhibition was dose-dependent. Western blot analysis indicated that treatment with the Gas induced apoptosis and autophagy in the HepG2 cells. The Δψm of the GA-treated HepG2 cells was decreased compared with the control, as monitored by immunofluorescence. However, upon the administration of 3-MA or Beclin-1-specific siRNAs (inhibitors of the autophagy), the expression levels of the apoptosis- and autophagy-associated proteins were decreased. In conclusion, the results of the present study indicated that GAs are potent anticancer agents that function through a combination of the apoptosis, autophagy and mitochondrial pathways.
In agro-ecosystems, plants are important mediators of interactions between their associated herbivorous insects and microbes, and any change in plants induced by one species may lead to cascading effects on interactions with other species. Often, such effects are regulated by phytohormones such as jasmonic acid (JA) and salicylic acid (SA). Here, we investigated the tripartite interactions among rice plants, three insect herbivores (Chilo suppressalis, Cnaphalocrocis medinalis or Nilaparvata lugens), and the causal agent of rice blast disease, the fungus Magnaporthe oryzae. We found that pre-infestation of rice by C. suppressalis or N. lugens but not by C. medinalis conferred resistance to M. oryzae. For C. suppressalis and N. lugens, insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves. In contrast, infestation by C. medinalis increased JA levels but reduced SA levels. The exogenous application of SA but not of JA conferred resistance against M. oryzae. These results suggest that pre-infestation by C. suppressalis or N. lugens conferred resistance against M. oryzae by increasing SA accumulation. These findings enhance our understanding of the interactions among rice plant, insects and pathogens, and provide valuable information for developing an ecologically sound strategy for controlling rice blast.
Backgrounds Cartilaginous endplate (CEP) plays an essential role in intervertebral disc (IVD) health and disease. The aim was to compare the CEP structure of lumbar IVD and to reveal the detailed pattern of integration between the CEP and bony endplate (BEP) from different species. Methods A total of 34 IVDs (5 human, 5 goat, 8 pig, 8 rabbit, and 8 rat IVDs) were collected, fixed and midsagittally cut; in each IVD, one‐half was used for histological staining to observe the CEP morphology, and the other half was used for scanning electron microscopy (SEM) analysis to measure the diameters and distributions of collagen fibers in the central and peripheral CEP areas and to observe the pattern of CEP‐BEP integration from different species. Results The human, pig, goat, and rabbit IVDs had the typical BEP‐CEP structure, but the rat CEP was directly connected with the growth plate. Human CEP was the thickest (896.95 ± 87.71 μm) among these species, followed by pig, goat, rat, and rabbit CEPs. Additionally, the mean cellular density of the rabbit CEP was the highest, which was 930 ± 202 per mm2, followed by the rat, goat, pig, and human CEPs. In all the species, the collagen fiber diameter in the peripheral area was much bigger than that in the central area. The collagen fiber diameters of CEP from the human, pig, goat, and rat were distributed between 35 nm and 65 nm. The BEP and CEP were connected by the collagen from the CEP, aggregating into bundles or cross links with each other to form a network, and anchored to BEP. Conclusions Significant differences in the thickness, cellular density, and collagen characterization of CEPs from different species were demonstrated; the integration of BEP‐CEP in humans, pigs, goats, and rabbits was mainly achieved by the collagen bundles anchoring system, while the typical BEP‐CEP interface did not exist in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.