Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking.
This article proposes an empirical test of whether aggregate economic behavior maps from the real to the virtual. Transaction data from a large commercial virtual world -the first such data set provided to outside researchers -is used to calculate metrics for production, consumption and money supply based on real-world definitions. Movements in these metrics over time were examined for consistency with common theories of macroeconomic change. The results indicated that virtual economic behavior follows real-world patterns. Moreover, a natural experiment occurred, in that a new version of the virtual world with the same rules came online during the study. The new world's macroeconomic aggregates quickly grew to be nearly exact replicas of those of the existing worlds,
This paper presents the image-processing algorithm customized for high-speed, real-time inspection of pavement cracking. In the algorithm, a pavement image is divided into grid cells of 8 x 8 pixels, and each cell is classified as a non-crack or crack cell using the grayscale information of the border pixels. Whether a crack cell can be regarded as a basic element (or seed) depends on its contrast to the neighboring cells. A number of crack seeds can be called a crack cluster if they fall on a linear string. A crack cluster corresponds to a dark strip in the original image that may or may not be a section of a real crack. Additional conditions to verify a crack cluster include the requirements in the contrast, width, and length of the strip. If verified crack clusters are oriented in similar directions, they will be joined to become one crack. Because many operations are performed on crack seeds rather than on the original image, crack detection can be executed simultaneously when the frame grabber is forming a new image, which permits a real-time, online pavement survey. The trial test results show good repeatability and accuracy when multiple surveys were conducted in different driving conditions. 17. Key Words pavement cracking distress, automatic inspections, real-time inspection, image-processing algorithm, crack seeds, crack cluster, crack detection 18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161; www.ntis.gov. 19. Security Classif. (of report) Unclassified 20. Security Classif.
Interdisciplinary teams are assembled in scientific research and are aimed at solving complex problems. Given their increasing importance, it is not surprising that considerable attention has been focused on processes of collaboration in interdisciplinary teams. Despite such efforts, we know less about the factors affecting the assembly of such teams in the first place. In this paper, we investigate the structure and the success of interdisciplinary scientific research teams. We examine the assembly factors using a sample of 1,103 grant proposals submitted to two National Science Foundation interdisciplinary initiatives during a 3-year period, including both awarded and non-awarded proposals. The results indicate that individuals’ likelihood of collaboration on a proposal is higher among those with longer tenure, lower institutional tier, lower H-index, and with higher levels of prior co-authorship and citation relationships. However, successful proposals have a little bit different relational patterns: individuals’ likelihood of collaboration is higher among those with lower institutional tier, lower H-index, (female) gender, higher levels of prior co-authorship, but with lower levels of prior citation relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.