Cryptochromes are blue-light receptors that regulate development and the circadian clock in plants and animals. We found that Arabidopsis cryptochrome 2 (CRY2) undergoes blue light–dependent homodimerization to become physiologically active. We identified BIC1 (blue-light inhibitor of cryptochromes 1) as an inhibitor of plant cryptochromes that binds to CRY2 to suppress the blue light–dependent dimerization, photobody formation, phosphorylation, degradation, and physiological activities of CRY2. We hypothesize that regulated dimerization governs homeostasis of the active cryptochromes in plants and other evolutionary lineages.
The roles of photoreceptors and their associated signaling mechanisms have been extensively studied in plant photomorphogenesis with a major focus on the photoresponses of the shoot system. Accumulating evidence indicates that light also influences root growth and development through the light-induced release of signaling molecules that travel from the shoot to the root. We explored whether aboveground light directly influences the root system of Arabidopsis thaliana Light was efficiently conducted through the stems to the roots, where photoactivated phytochrome B (phyB) triggered expression of ELONGATED HYPOCOTYL 5 (HY5) and accumulation of HY5 protein, a transcription factor that promotes root growth in response to light. Stimulation of HY5 in response to illumination of only the shoot was reduced when root tissues carried a loss-of-function mutation in PHYB, and HY5 mutant roots exhibited alterations in root growth and gravitropism in response to shoot illumination. These findings demonstrate that the underground roots directly sense stem-piped light to monitor the aboveground light environment during plant environmental adaptation.
It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants.
Plant photoreceptor phytochromes are phosphoproteins, but the question as to the functional role of phytochrome phosphorylation has remained to be elucidated. We investigated the functional role of phytochrome phosphorylation in plant light signaling using a Pfr-specific phosphorylation site mutant, Ser598Ala of oat (Avena sativa) phytochrome A (phyA). The transgenic Arabidopsis thaliana (phyA-201 background) plants with this mutant phyA showed hypersensitivity to light, suggesting that phytochrome phosphorylation at Serine-598 (Ser598) in the hinge region is involved in an inhibitory mechanism. The phosphorylation at Ser598 prevented its interaction with putative signal transducers, Nucleoside Diphosphate Kinase-2 and Phytochrome-Interacting Factor-3. These results suggest that phosphorylation in the hinge region of phytochromes serves as a signal-modulating site through the protein–protein interaction between phytochrome and its putative signal transducer proteins.
Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium-and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA-and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin-and calciumbinding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.