Abstract. In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in 1989, and ASTER data in 2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou (HLG), Mozigou (MZG), Yanzigou (YZG), and Dagongba (DGB)) in 2009. The results show that the area dominated by the 74 glaciers has shrunk by 11.3 % (29.2 km 2 ) from 1966 to 2009. Glacier area on the eastern and western slopes of the Gongga Mountains decreased by 9.8 % and 14.6 % since 1966, respectively. The loss in glacier area and length is, respectively, 0.8 km 2 and 1146.4 m for the HLG Glacier, 2.1 km 2 and 501.8 m for the MZG Glacier, 0.8 km 2 and 724.8 m for the YZG Glacier, and 2.4 km 2 and 1002.3 m for the DGB Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. The mean annual temperatures over the eastern and western slopes of the Gongga Mountains have been increasing by 0.34 K decade −1 and 0.24 K decade −1 , respectively. Moreover, mean annual precipitation has only increased by 1 % in the past 50 yr. The increasing amount of precipitation could not compensate for the glacier mass loss due to the temperature increase in the Gongga Mountains. This suggests that the warming of the climate is probably also responsible for the glacier retreat in the study region. At the region scale, glacier changes were also controlled by local topographical factors.
Abstract. In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in 1989, 1994, 2005, and ASTER data in 2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou, Mozigou, Yanzigou, and Dagongba) in 2009. The results show that the area dominated by the 74 glaciers has shrunk by 11.3 % (29.2 km2) from 1966 to 2009. Glacier area on the eastern and western slope of the Gongga Mountains decreased by 14.1 km2 (5.5 % in 1966) and 15.1 km2 (5.9 % in 1966), respectively. The loss in glacier area and length is respectively 0.8 km2 and 1146.4 m (26.7 m yr−1) for the Hailuogou glacier, 2.1 km2 and 501.8 m (11.7 m yr−1) for the Mozigou Glacier, 0.8 km2 and 724.8 m (16.9 m yr−1) for the Yanzigou Glacier, and 2.4 km2 and 1002.3 m (23.3 m yr−1) for the Dagongba Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. During 1966–2009, the mean annual temperature over the eastern and western slope of the Gongga Mountains has been increasing by 0.21 °C/10 yr and 0.13 °C/10 yr, respectively. Moreover, it was stable in the mean annual precipitation. This evidence indicates that the warming of the climate is probably responsible for the glacier retreat in the study region.
The Weihe River in central China is the largest tributary of the Yellow River and contains a well-developed strath terrace system. A new chronology for the past 1.11 Ma for a spectacular flight of strath terraces along the upper Weihe River near Longxi is defined based on field investigations of loess—paleosol sequences and magnetostratigraphy. All the strath terraces are strikingly similar, having several meters of paleosols that have developed directly on top of fluvial deposits located on the terrace treads. This suggests that the abandonment of each strath terrace by river incision occurred during the transition from glacial to interglacial climates. The average fluvial incision rates during 1.11—0.71 Ma and since 0.13 Ma are 0.35 and 0.32 m/ka, respectively. These incision rates are considerably higher than the average incision rate of 0.16 m/km for the intervening period between 0.71 and 0.13 Ma. Over all our results suggest that cyclic Quaternary climate change has been the main driving factor for strath terrace formation with enhanced episodic uplift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.