Bacterial enoyl-acyl carrier protein (ACP) reductase has been confirmed as a novel target for antibacterial drug development. In the screening of inhibitors of Staphylococcus aureus enoyl-ACP reductase (FabI), complestatin was isolated as a potent inhibitor of S. aureus FabI together with neuroprotectin A and chloropeptin I from Streptomyces chartreusis AN1542. Complestatin and related compounds inhibited S. aureus FabI with IC 50 of 0.3-0.6 µM. They also prevented the growth of S. aureus as well as methicillin-resistance S. aureus (MRSA) and quinolone-resistant S. aureus (QRSA), with minimum inhibitory concentrations (MICs) of 2-4 µg/mL. Consistent with its FabI-inhibition, complestatin selectively inhibited the intracellular fatty acid synthesis in S. aureus, whereas it did not affect the macromolecular biosynthesis of other cellular components, such as DNA, RNA, proteins, and the cell wall. Additionally, supplementation with exogenous fatty acids reversed the antibacterial effect of complestatin, demonstrating that it targets fatty acid synthesis. In this study, we reported that complestatin and related compounds showed potent antibacterial activity via inhibiting fatty acid synthesis.
Dihydrofolate reductase (DHFR) has been confirmed to be a novel target for antibacterial drug development. In this study, we determined that a fungal metabolite from Stachybotrys sp. FN298 can inhibit the DHFR of Staphylococcus aureus. Its structure was identified as a lactone form of stachybotrydial using mass spectrometry and nuclear magnetic resonance analysis. This compound inhibited S. aureus DHFR with a half-maximal inhibitory concentration of 41 µM. It also prevented the growth of S. aureus and methicillinresistant S. aureus (MRSA) with a minimum inhibitory concentration of 32 µg·mL 1 . To our knowledge, this is the first description of a DHFR inhibitor of microbial origin. The inhibitory function of the lactone form of stachybotrydial highlights its potential for development into a new broad-spectrum antibacterial agent and as an agent against MRSA.
In the continued search for inhibitors of enoyl-acyl carrier protein (ACP) reductase, we found that four acylbenzenediol sulfate metabolites from Streptomyces sp. AN1761 potently inhibited bacterial enoyl-ACP reductases of Staphylococcus aureus, Streptococcus pneumoniae, and Mycobacterium tuberculosis. Their structures were identified as panosialins A, B, wA, and wB by MS and NMR data. They showed stronger inhibition against S. aureus FabI and S. pneumoniae FabK with IC50 of 3-5 microM than M. tuberculosis InhA with IC50 of 9-12 microM. They also exhibited a stronger antibacterial spectrum on S. aureus and S. pneumoniae than M. tuberculosis. In addition, the higher inhibitory activity of panosialin wB than panosialin B on fatty acid biosynthesis was consistent with that on bacterial growth, suggesting that they could exert their antibacterial activity by inhibiting fatty acid synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.