The tumor suppressor p53 is the most frequently mutated gene in human cancer and more than half of cancers contain p53 mutations. The development of novel and effective therapeutic strategies for p53 mutant cancer therapy is a big challenge and highly desirable. Ubiquitin‐specific protease 7 (USP7), also known as HAUSP, is a deubiquitinating enzyme and proposed to stabilize the oncogenic E3 ubiquitin ligase MDM2 that promotes the proteosomal degradation of p53. Herein, we report the design and characterization of U7D‐1 as the first selective USP7‐degrading Proteolysis Targeting Chimera (PROTAC). U7D‐1 showed selective and effective USP7 degradation, and maintained potent cell growth inhibition in p53 mutant cancer cells, with USP7 inhibitor showing no activity. These data clearly demonstrated the practicality and importance of PROTAC as a preliminary chemical tool for investigating USP7 protein functions and a promising method for potential p53 mutant cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.