Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8 h. Using laser-induced graphene (LIG), the inhibition rate improves to ∼81%. Combined with the photothermal effect, 99.998% bacterial killing efficiency could be attained within 10 min. For aerosolized bacteria, LIG also showed superior antibacterial capacity. The LIG can be converted from a diversity of carbon precursors including biomaterials, which eases the supply stress and environmental pressure amid an outbreak. In addition, self-reporting of mask conditions is feasible using the moisture-induced electricity from gradient graphene. Our results improve the safe use of masks and benefit the environment.
BackgroundObesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression.MethodsWe collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background.ResultsWe found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities.ConclusionsThese changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0271-6) contains supplementary material, which is available to authorized users.
This study investigated biphasic electric current (BEC) functions as a new type of electrical stimulation to induce rat calvarial osteoblasts to proliferate, differentiate and synthesize cytokines. The culture system was designed so that biphasic current flowed between upper and lower gold plates. BEC helps to minimize the net charge accumulation during cell exposure to the electrical stimulation. Osteoblasts were exposed to electrical stimulation of 1.5 microA/cm2 at 3000 Hz, and the effect of BEC was assessed in the interrupted mode (6 h daily) and in the continuous mode (24 h daily), depending on the interval of stimulation. Whereas proliferation increased by 31% after stimulation in the continuous mode for 2 days, it was unaffected in the interrupted mode. The transcriptional expression of osteogenesis-related genes such as alkaline phosphatase (ALP), osteopontin, and type I collagen was unchanged 4 days after stimulation in both modes, while cbfa1 was decreased under the same conditions. There was no detectable change in mRNA expression of growth factors (BMP-2, -4, IGF-2 and TGF-beta1) that promote osteoblast differentiation. However, real-time RT-PCR and ELISA demonstrated that vascular endothelial growth factor (VEGF) was markedly up-regulated by BEC. Induction of VEGF by BEC was not hypoxia driven. In conclusion, the present in vitro study demonstrates that BEC increases cell proliferation and induces the production of VEGF. The BEC was more effective with continuous stimulation than with interrupted stimulation. To confirm whether BEC can enhance osteogenesis, further in vivo studies are needed.
HIGHLIGHTS • Summarizing the strategies for the synthesis and engineering of laser-induced graphene, which is essential for the design of highperformance sensors. • Introducing LIG sensors for the detection of various stimuli with a focus on the design principle and working mechanism. • Discussing the integration of LIG sensors with signal transducers and conveying the prospects of smarting sensing systems to come.
Electrical stimulation (ES) can activate diverse biostimulatory responses in a range of tissues. Of various forms of ES, the application of biphasic electric current (BEC) is a new approach to bone formation. This study is to investigate the effects and mechanism of action of BEC in osteoblast differentiation and cytokine production in human mesenchymal stromal cells (hMSCs). Using an in vitro culture system with a modified version of the BEC stimulator chip used in our previous study, we exposed hMSCs to a 100 Hz ES with a magnitude of 1.5/15 muA/cm(2) for 250/25 mus. hMSCs showed increased proliferation during static BEC stimulation for 5 days. However, alkaline phosphatase activity and calcium deposition were enhanced in hMSCs 7 days after the stimulation, rather than during the period of ES. BEC induced vascular endothelial growth factor (VEGF) and BMP-2 production; the former can enhance the proliferation of human umbilical vein endothelial cells in culture using conditioned media from BEC cultures. Treatment with selective inhibitors of p38 MAPK (SB203580) or Erk (PD98059), as well as calcium channel blockers (verapamil and nifedipine), reduced the BEC-mediated increase of VEGF expression and cell proliferation. These findings reveal that BEC is involved in the osteoblast differentiation of hMSCs through enhancement of cell proliferation and modulation of the local endocrine environment through VEGF and BMP-2 induction through the activation of MAPK (Erk and p38) and the calcium channel. Thus, local stimulation using BEC might be most beneficial in promoting osteogenic differentiation of hMSCs, resulting in enhanced bone formation for bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.