We report ultrafast pump-probe spectroscopy examining exciton dynamics in atomically thin MoS 2 . Spectrally-and temporally-resolved measurements are performed to investigate the interaction dynamics of two important direct-gap excitons (A and B) and their associated broadening kinetics. The two excitons show strongly correlated inter-excitonic dynamic, in which the transient blue-shifted excitonic absorption originates from the internal A-B excitonic interaction. The observed complex spectral response is determined by the exciton collision-induced linewidth broadening; the broadening of the B exciton linewidth in turn lowers the peak spectral amplitude of the A exciton. Resonant excitation at the B exciton energy reveals that inter-excitonic scattering plays a more important role in determining the broadening kinetics than free-carrier scattering.
We demonstrate terahertz (THz) imaging and spectroscopy of a 15 × 15-mm2 single-layer graphene film on Si using broadband THz pulses. The THz images clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing us to measure sheet conductivity with sub-mm resolution without fabricating electrodes. The THz carrier dynamics are dominated by intraband transitions and the THz-induced electron motion is characterized by a flat spectral response. A theoretical analysis based on the Fresnel coefficients for a metallic thin film shows that the local sheet conductivity varies across the sample from σ(s) = 1.7 × 10(-3) to 2.4 × 10(-3) Ω(-1) (sheet resistance, ρ(s) = 420 - 590 Ω/sq).
An experiment-theory comparison is presented to demonstrate terahertz-induced extreme-nonlinear transients in a GaAs/AlGaAs quantum-well system. The terahertz-pump and optical-probe experiments show pronounced spectral modulations of the light- and heavy-hole excitonic resonances. Excellent agreement with the results of microscopic many-body calculations is obtained, identifying clear ponderomotive contributions and the generation of terahertz harmonics.
Photoexcited carrier relaxation is a recurring topic in understanding the transient conductivity dynamics of graphene-based devices. For atomically thin graphene oxide (GO), a simple free-carrier Drude response is expected to govern the terahertz (THz) conductivity dynamics--same dynamics observed in conventional CVD-grown graphene. However, to date, no experimental testimony has been provided on the origin of photoinduced conductivity increase in GO. Here, using ultrafast THz spectroscopy, we show that the photoexcited carrier relaxation in GO exhibits a peculiar non-Drude behavior. Unlike graphene, the THz dynamics of GO show percolation behaviors: as the annealing temperature increases, transient THz conductivity rapidly increases and the associated carrier relaxation changes from mono- to biexponential decay. After saturating the recombination decay through defect trapping, a new ultrafast decay channel characterized by multiparticle Auger scattering is observed whose threshold pump fluence is found to be 50 μJ/cm2. The increased conductivity is rapidly suppressed within 1 ps due to the Auger recombination, and non-Drude THz absorptions are subsequently emerged as a result of the defect-trapped high-frequency oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.