The separation of C2H2/CO2 is not only industrially important for acetylene purification but also scientifically challenging owing to their high similarities in physical properties and molecular sizes. Ultramicroporous metal-organic frameworks (MOFs) can exhibit a pore confinement effect to differentiate gas molecules of similar size. Herein, we report the fine-tuning of pore sizes in sub-nanometer scale on a series of isoreticular MOFs that can realize highly efficient C2H2/CO2 separation. The subtle structural differences lead to remarkable adsorption performances enhancement. Among four MOF analogs, by integrating appropriate pore size and specific binding sites, [Cu(dps)2(SiF6)] (SIFSIX-dps-Cu, SIFSIX = SiF62-, dps = 4.4’-dipyridylsulfide, also termed as NCU-100) exhibits the highest C2H2 uptake capacity and C2H2/CO2 selectivity. At room temperature, the pore space of SIFSIX-dps-Cu significantly inhibits CO2 molecules but takes up a large amount of C2H2 (4.57 mmol g−1), resulting in a high IAST selectivity of 1787 for C2H2/CO2 separation. The multiple host-guest interactions for C2H2 in both inter- and intralayer cavities are further revealed by dispersion-corrected density functional theory and grand canonical Monte Carlo simulations. Dynamic breakthrough experiments show a clean C2H2/CO2 separation with a high C2H2 working capacity of 2.48 mmol g−1.
Reduced graphene oxide (RGO) nanosheet-supported SnS2 nanosheets are prepared by a one-step microwave-assisted technique. These SnS2 nanosheets are linked with each other and dispersed uniformly on RGO surface. The SnS2-RGO sheet-on-sheet nanostructure exhibits good electrochemical performances as an anode material for lithium ion batteries. It shows larger-than-theoretical reversible capacities at 0.1 C and excellent high-rate capability at 1 C and 5 C. The composite is also for the first time identified as an excellent visible light-driven catalyst of rhodamine B and phenol with high degradation efficiencies. The removal rates of rhodamine B and phenol are 100 and 83.2%, respectively, for the SnS2-RGO composite, whereas these values are only 64.8 and 51.5% for pristine SnS2 after the same irradiation times. The outstanding electrochemical or photocatalytic performances of the composite have been attributed to the complementary effect of RGO and SnS2 in the perfect sheet-on-sheet composition nanostructure.
Poly(ethylene oxide)-based solid-state electrolytes are widely considered promising candidates for the next generation of lithium and sodium metal batteries. However, several challenges, including low oxidation resistance and low cation transference number, hinder poly(ethylene oxide)-based electrolytes for broad applications. To circumvent these issues, here, we propose the design, synthesis and application of a fluoropolymer, i.e., poly(2,2,2-trifluoroethyl methacrylate). This polymer, when introduced into a poly(ethylene oxide)-based solid electrolyte, improves the electrochemical window stability and transference number. Via multiple physicochemical and theoretical characterizations, we identify the presence of tailored supramolecular bonds and peculiar morphological structures as the main factors responsible for the improved electrochemical performances. The polymeric solid electrolyte is also investigated in full lithium and sodium metal lab-scale cells. Interestingly, when tested in a single-layer pouch cell configuration in combination with a Li metal negative electrode and a LiMn0.6Fe0.4PO4-based positive electrode, the polymeric solid-state electrolyte enables 200 cycles at 42 mA·g−1 and 70 °C with a stable discharge capacity of approximately 2.5 mAh when an external pressure of 0.28 MPa is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.