A tele-rehabilitation system that can achieve remote interaction between a physical therapist (PT) and a patient was developed. Patients need to execute rehabilitation exercises to maintain upper limb function. However, it is difficult for them to travel to hospitals without aid. This system is equipped with a PC and a Kinect sensor at the hospital side (i.e., the PT), and a PC and an upper limb assistive device in the patient’s home. The PT displays the motion in front of a Kinect sensor, which identifies the motion. In addition, the device on the home side assists the motion of the patient using the Internet. When the device receives a force higher than the safety value from the patient at any particular point on it, vibrators at the corresponding point on the PT’s arm start to vibrate. Thereby, the PT can identify the patient’s condition and limitations. The time delays in the transmission of data of device motion and the vibrators were measured and compared. As a result, the PT could identify the patient’s condition faster than the motion of the device.
This paper proposes a close-fitting assistive suit, called e.z.UP®, with a passive actuation mechanism composed of an adjustable structure. The suit can adequately assist the back and arm muscles of a user with the proposed layout of an arm assistive belt and a two-layer structure, respectively. With its lightweight characteristic (i.e., weighing 0.75 kg only), the proposed suit is portable and easy to wear without additional burden. By using the averaged Japanese body data, a simulation was conducted based on a human body model wearing our proposed suit to evaluate the layout of the arm assistive belt. The simulation results prove that the proposed suit can adequately assist the user’s arm muscles based on the user’s motion. An experiment involving the measurement of muscle activities is also implemented with seven young subjects and seven middle-aged subjects to evaluate the arm assistive belt and the two-layer structure. The experimental results reveal that the proposed suit can successfully and appropriately assist both the arm and back muscles simultaneously.
Due to the growing elderly population in many developed countries like Japan, assistive devices are increasingly needed to overcome the difficulties of their activities of daily living (ADL). The motion of standing up places a particular burden on the ankle and knee joints and connects static motions (e.g., sitting and lying) and kinetic motions (e.g., walking and climbing up/down the stairs). In our previous research, two types of standing-up assistance apparatuses were introduced according to the suitable standing-up motions. However, these devices are bulky and cannot be widely used in practical settings such as bus terminals. Regarding the suitable standing-up motions of the elderly in the previous literature, a standing-up apparatus with a pantograph mechanism is introduced to diminish the size of the mechanism based on three design principles: (1) the trajectory of the user's COG is an arc; (2) the trajectory of the user's hip joint while standing up is a straight line at an angle of 45 [deg] from the horizon; and (3) the user is supported until the knee angle reaches 60 [deg]. Simulations showed that the load on knee and ankle joint is decreased, and user may stand up easily with our proposed apparatus. A prototype of the apparatus that may be installed on various chairs in public was fabricated. Considering that the apparatus may be used in places without electric power supply, the apparatus is made simply with links and a gas spring instead of electric actuators. Experimental measurements of the trajectories of the center of gravity (COG) and hip joints show that the proposed apparatus may help users to stand in a way that minimizes stress on their lower-body joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.