Finite element equations are introduced when the wet deformation is considered under Coupled Deformation and Seepage Fields. The principle of the initial stress increment method, by which the wet deformation can be calculated, is detailed dealt with. One earth-rock dam is stimulated by finite element method during water storage. By applying nonlinearity elastic model, give the discussions on the impact on stress field and displacement field by the wet deformation. The results show that the wet deformation weakens the uplift by buoyancy. Those results gained by numerical method may provide reference to engineering practice.
viscoelasto-plastic; double yield surface; equivalent sand wall; finite element; Abstract. Based on double yield elastoplastic model, one viscoelasto-plastic model is dealt with in detail. The method of transferring to equivalent sand wall is introduced when soft soil is treated by plastic drainage plate. The viscoelasto-plastic model and modified Cam-Clay model are applied into the finite element calculation of soft foundation treatment of a tailing dam. By comparison, it can be got that the displacement calculated by the viscoelasto-plastic model is closer to monitoring data than that calculated by modified Cam-Clay model. It demonstrates the reasonableness and efficiency of the viscoelasto-plastic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.