Replacing precious and nondurable Pt catalysts with cheap and commercially available materials to facilitate sluggish cathodic oxygen reduction reaction (ORR) is a key issue in the development of fuel cell technology. The recently developed cost effective and highly stable metal-free catalysts reveal comparable catalytic activity and significantly better fuel tolerance than that of current Pt-based catalysts; therefore, they can serve as feasible Pt alternatives for the next generation of ORR electrocatalysts. Their promising electrocatalytic properties and acceptable costs greatly promote the R&D of fuel cell technology. This review provides an overview of recent advances in state-of-the-art nanostructured metal-free electrocatalysts including nitrogen-doped carbons, graphitic-carbon nitride (g-C(3) N(4) )-based hybrids, and 2D graphene-based materials. A special emphasis is placed on the molecular design of these electrocatalysts, origin of their electrochemical reactivity, and ORR pathways. Finally, some perspectives are highlighted on the development of more efficient ORR electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors to accelerate the commercialization of fuel cell technology.
Boron has been explored as p-block
catalysts for nitrogen reduction
reaction (NRR) by density functional theory. Unlike transition metals,
on which the active centers need empty d orbitals to accept the lone-pair
electrons of the nitrogen molecule, the sp3 hybrid orbital
of the boron atom can form B-to-N π-back bonding. This results
in the population of the N–N π* orbital and the concomitant
decrease of the N–N bond order. We demonstrate that the catalytic
activity of boron is highly correlated with the degree of charge transfer
between the boron atom and the substrate. Among the 21 concept-catalysts,
single boron atoms supported on graphene and substituted into h-MoS2 are identified as the most promising NRR catalysts, offering
excellent energy efficiency and selectivity against hydrogen evolution
reaction.
By first-principles computations, nitrogen becomes activated via distal pathway on the single Ru-atom-embedded two boron monolayers, exhibiting relatively low reaction energy barriers of 0.42 and 0.44 eV, respectively.
Periodic mesoporous organosilica magnetic hollow spheres (PMO–MHS) are synthesized. The particle size, shell wall thickness and saturation magnetization value of PMO–MHS are tunable by varying the ratio of templating agent to magnetic nanoparticles. The high saturation magnetization ensures that these functional mesoporous hollow spheres can be efficient materials for targeted drug delivery assisted by magnetic fields.
In this paper, we report a novel synthesis and selective bioseparation of the composite of Fe3O4 magnetic nanocrystals and highly ordered MCM‐41 type periodic mesoporous silica nanospheres. Monodisperse superparamagnetic Fe3O4 nanocrystals were synthesized by thermal decomposition of iron stearate in diol in an autoclave at low temperature. The synthesized nanocrystals were encapsulated in mesoporous silica nanospheres through the packing and self‐assembly of composite nanocrystal–surfactant micelles and surfactant/silica complex. Different from previous studies, the produced magnetic silica nanospheres (MSNs) possess not only uniform nanosize (90 ∼ 140 nm) but also a highly ordered mesostructure. More importantly, the pore size and the saturation magnetization values can be controlled by using different alkyltrimethylammonium bromide surfactants and changing the amount of Fe3O4 magnetic nanocrystals encapsulated, respectively. Binary adsorption and desorption of proteins cytochrome c (cyt c) and bovine serum albumin (BSA) demonstrate that MSNs are an effective and highly selective adsorbent for proteins with different molecular sizes. Small particle size, high surface area, narrow pore size distribution, and straight pores of MSNs are responsible for the high selective adsorption capacity and fast adsorption rates. High magnetization values and superparamagnetic property of MSNs provide a convenient means to remove nanoparticles from solution and make the re‐dispersion in solution quick following the withdrawal of an external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.