A potential platform for simultaneous anticancer drug delivery and MRI cell imaging has been demonstrated by uniform hollow inorganic core/shell structured multifunctional mesoporous nanocapsules, which are composed of functional inorganic (Fe(3)O(4), Au, etc.) nanocrystals as cores, a thin mesoporous silica shell, and a huge cavity in between. The synthetic strategy for the creation of huge cavities between functional core and mesoporous silica shell is based on a structural difference based selective etching method, by which solid silica middle layer of Fe(2)O(3)@SiO(2)@mSiO(2) (or Au@SiO(2)@mSiO(2)) composite nanostructures was selectively etched away while the mesoporous silica shell could be kept relatively intact. The excellent biocompatibility of obtained multifunctional nanocapsules (Fe(3)O(4)@mSiO(2)) was demonstrated by very low cytotoxicity against various cell lines, low hemolyticity against human blood red cells and no significant coagulation effect against blood plasma. The cancer cell uptake and intracellular location of the nanocapsules were observed by confocal laser scanning microscopy and bio-TEM. Importantly, the prepared multifunctional inorganic mesoporous nanocapsules show both high loading capacity (20%) and efficiency (up to 100%) for doxorubicin simultaneously because of the formation of the cavity, enhanced surface area/pore volume and the electrostatic interaction between DOX molecules and mesoporous silica surface. Besides, the capability of Fe(3)O(4)@mSiO(2) nanocapsules as contrast agents of MRI was demonstrated both in vitro and in vivo, indicating the simultaneous imaging and therapeutic multifunctionalities of the composite nanocapsules. Moreover, the concept of multifunctional inorganic nanocapsules was extended to design and prepare Gd-Si-DTPA grafted Au@mSiO(2) nanocapsules for nanomedical applications, further demonstrating the generality of this strategy for the preparation of various multifunctional mesoporous nanocapsules.
Uncoupling protein 1 (UCP1), a 32-kDa protein located in the inner mitochondrial membrane, is abundant in brown adipose tissue, as a proton transporter in mitochondria inner membrane which uncouples oxidative metabolism from ATP synthesis and dissipates energy through the heat. UCP1 has been reported to play important roles for energy homeostasis in rodents and neonate of larger mammals including human. Recently, numerous candidate genes were searched to determine the genetic factors implicated in the pathogenesis of obesity, related metabolic disorders and diabetes. UCP-1, which plays a major role in thermogenesis, was suggested to be one of the candidates. This review summarizes data supporting the existence of brown adipocytes and the role of UCP1 in energy dissipation in adult humans, and the genetic variety association with the fat metabolism, obesity and diabetes.
The aim of the present study was to investigate the effect of selenium (Se), polysaccharide of Atractylodes macrocephala Koidz. (PAMK), and the combination of Se and PAMK on the immune response, heat shock protein (HSP) levels under heat stress (HS) condition in chicken spleen. Two hundred chickens were randomly divided into two groups, the HS group and the control (Con) group. Then these chickens were treated with Se (0.3 mg/kg), PAMK (200 mg/kg) alone, and the combination of Se (0.3 mg/kg) and PAMK (200 mg/kg). The antioxidative enzymes, cytokines contents, and expression levels of HSP27 and HSP70 were examined in chicken spleen. The results indicated that HS induced higher levels of TNF-α, IL-4, HSP27, HSP70, and MDA levels but lower level of IFN-γ, IL-2, Gpx, and SOD in spleen (P < 0.05). These responses were ameliorated by the treatment of Se, PAMK alone, and the combination of Se and PAMK (P < 0.05 or not) The results showed that under common condition, Se and PAMK could improve the immune response by enhancing the levels of some cytokines to proper levels; however, under HS condition, Se and PAMK could change the abnormal levels of cytokines and oxidative damages to ameliorate the injury induced by HS. In addition, there existed synergistic effect on the modulation of these biomarkers in chicken spleen between Se and PAMK. So both Se and PAMK play important roles in regulating the immune function in chicken. Considering the synergistic effect on immune regulation of PAMK, this herb deserves further investigation to evaluate its role in improving the effect of traditional immune regulators.
Resveratrol, a natural antioxidant, anti-inflammatory plant extract, was found to have a protective effect in poultry subjected to heat stress. In this study, we strove to characterize resveratrol on intestinal of duck exposed to acute heat stress and investigate the underlying mechanism. A total of 120 Shan-ma ducks (60 days old) were randomly divided into 2 groups. The control group was fed a basal diet, and the resveratrol group was fed a basal diet supplemented with 400 mg/kg resveratrol. Animals in 2 groups were kept at a temperature of 24°C ± 2°C for 15 d. Then, animals of both groups were placed in an artificial climate room at 39°C. Twelve ducks of each group were sacrificed for sampling at 0, 30, and 60 min, respectively. Results indicated that resveratrol increased the ratio of villus height to crypt depth, increased the number of goblet cells, and reduced the histopathological damage of jejunum caused by acute heat stress. Furthermore, the gene expression of heat shock proteins ( HSP60, HSP70 , and HSP90 ) and tight junction proteins ( CLDN1 and OCLN ) was significantly increased in the resveratrol group compared to that in the control groups. Simultaneously, resveratrol significantly activated the SIRT1-NRF1/NRF2 signaling pathways, improved ATP level of jejunum, and increased SOD and CAT antioxidant enzymes activities. In addition, we found that the NF-κB / NLRP3 inflammasome signaling pathways were repressed under acute heat stress. Meanwhile, supplement resveratrol further inhibited the NLRP3 inflammasome pathway, decreased protein level of NLRP3 and caspase1 p20, reduced the secretion of IL-1β. Taken together, our results indicate that resveratrol against the oxidative damage and inflammation injury in duck jejunum induced by heat stress via active SIRT1 signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.