Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. strain JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify several new clifednamide producers, some having improved clifednamide yields. Using a parallel synthetic biology approach, CftA isozymes were used to engineer the ikarugamycin pathway of Streptomyces sp. strain NRRL F-2890 to yield clifednamides. Further, we observed that strong CftA expression leads to the production of a new PTM, clifednamide C. We demonstrate the utility of both genome mining and synthetic biology to rapidly increase clifednamide production.
Piperazate (Piz) is a nonproteinogenic amino acid noted for its unusual N–N bond motif. Piz is a proline mimic that imparts conformational rigidity to peptides. Consequently, piperazyl molecules are often bioactive and desirable for therapeutic exploration. The in vitro characterization of Kutzneria enzymes KtzI and KtzT recently led to a biosynthetic pathway for Piz. However, Piz anabolism in vivo has remained completely uncharacterized. Herein, we describe the systematic interrogation of actinobacterial Piz metabolism using a combination of bioinformatics, genetics, and select biochemistry. Following studies in Streptomyces flaveolus, Streptomyces lividans, and several environmental Streptomyces isolates, our data suggest that KtzI-type enzymes are conditionally dispensable for Piz production. We also demonstrate the feasibility of Piz monomer production using engineered actinobacteria for the first time. Finally, we show that some actinobacteria employ fused KtzI–KtzT chimeric enzymes to produce Piz. Our findings have implications for future piperazyl drug discovery, pathway engineering, and fine chemical bioproduction.
Significance Actinomycetes produce many clinically useful drugs, especially antibiotics and anticancer agents. Rare actinomycetes are known to produce bioactive molecules but they remain underexplored compared to more common Streptomyces spp . Natural molecules having piperazate building blocks are often bioactive, and genome analyses previously indicated the rare actinomycete Lentzea flaviverrucosa DSM 44664 may encode for the production of such molecules. To discover these from complex fermentation mixtures, we devised and employed a targeted metabolomic approach that revealed petrichorin A, an unusual heterodimeric biaryl-cyclohexapeptide. Its structure was determined by using multi-dimensional nuclear magnetic resonance, theoretical calculations, and strain mutagenesis, and its biosynthesis implicated an atypical cytochrome p450 heterodimerization event. Petrichorin A demonstrated potent cytotoxicity, highlighting heterodimeric-biaryls as interesting features for future drug design.
Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion–deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus–clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.
Polycyclic tetramate macrolactams (PTMs) are a class of structurally complex hybrid polyketide-nonribosomal peptide (PK-NRP) natural products produced by diverse bacteria. Several PTMs display pharmaceutically interesting bioactivities, and the early stages of PTM biosynthesis involving polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) enzymology are well studied. However, the timing and mechanisms of post PKS-NRPS oxidations by P450 monooxygenases encoded in PTM biosynthetic gene clusters (BGCs) remain poorly characterized. Here we demonstrate that CftA, encoded in clifednamide-type PTM BGCs, is a multifunctional P450 monooxygenase capable of converting the C29–C30 ethyl side chain of ikarugamycin to either a C29–C30 methyl ketone or a C29–C30 hydroxymethyl ketone through C–H bond activation, resulting in the formation of clifednamide A or clifednamide C, respectively. We also report the complete structure of clifednamide C solved via multidimensional NMR (COSY, HSQC, HMBC, NOESY, and TOCSY) using material purified from an engineered Streptomyces strain optimized for production. Finally, the in vitro reconstitution of recombinant CftA catalytic activity revealed the oxidation cascade for sequential conversion of ikarugamycin to clifednamide A and clifednamide C. Our findings confirm prior genetics-based predictions on the origins of clifednamide complexity via P450s encoded in PTM BGCs and place CftA into a growing group of multifunctional P450s that tailor PTM natural products through late-stage regioselective C–H bond activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.