The objective of this study was to purify cells in the Leydig cell lineage following regeneration after ethane dimethanesulfonate (EDS) treatment and compare their steroidogenic capacity. Regenerated progenitor (RPLCs), immature (RILCs), and adult Leydig cells (RALCs) were isolated from testes 21, 28 and 56 days after EDS treatment respectively. Production rates for androgens including androsterone and 5a-androstane-17b, 3a-diol (DIOL), testosterone and androstenedione were measured in RPLCs, RILCs and RALCs in media after 3-h in vitro culture with 100 ng/ml LH. Steady-state mRNA levels of steroidogenic enzymes and their activities were measured in freshly isolated cells. Compared to adult Leydig cells (ALCs) isolated from normal 90-day-old rat testes, which primarily produce testosterone (69.73%), RPLCs and RILCs primarily produced androsterone (70.21%) and DIOL (69.79%) respectively. Leydig cells isolated from testes 56 days post-EDS showed equivalent capacity of steroidogenesis to ALCs and primarily produced testosterone (72.90%). RPLCs had cholesterol side-chain cleavage enzyme, 3b-hydroxysteroid dehydrogenase 1 and 17a-hydroxylase but had almost no detectable 17b-hydroxysteroid dehydrogenase 3 and 11b-hydroxysteroid dehydrogenase 1 activities, while RILCs had increased 17b-hydroxysteroid dehydrogenase 3 and 11b-hydroxysteroid dehydrogenase 1 activities. Because RPLCs and RILCs had higher 5a-reductase 1 and 3a-hydroxysteroid dehydrogenase activities they produced mainly 5a-reduced androgens. Real-time PCR confirmed the similar trends for the expressions of these steroidogenic enzymes. In conclusion, the purified RPLCs, RILCs and RALCs are similar to those of their counterparts during rat pubertal development.
Background Previous study demonstrated that extracellular ATP could promote cell migration and invasion in multiple human cancers. Till now, the pro-invasive mechanisms of ATP and P2RX6, a preferred receptor for ATP, are still poorly studied in RCC. Methods Bioinformatics analysis was performed to identify the differentially expressed genes during RCC different stages. Tissue microarray, IHC staining and survival analysis was respectively used to evaluate potential clinical function. In vitro and in vivo assays were performed to explore the P2RX6 biological effects in RCC progression. Results We found that ATP might increase RCC cells migration and invasion through P2RX6. Mechanism dissection revealed that ATP-P2RX6 might modulate the Ca 2+ -mediated p-ERK1/2/MMP9 signaling to increase the RCC cells migration and invasion. Furthermore, METTL14 implicated m 6 A modification in RCC and down-regulated P2RX6 protein translation. In addition, human clinical survey also indicated the positive correlation of this newly identified signaling in RCC progression and prognosis. Conclusions Our findings revealed that the newly identified ATP-P2RX6-Ca 2+ -p-ERK1/2-MMP9 signaling facilitates RCC cell invasion and metastasis. Targeting this novel signaling pathway with small molecules might help us to develop a new approach to better suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1223-y) contains supplementary material, which is available to authorized users.
Quercetin and hyperoside (QH) in combination (1:1 ratio) have previously been shown to inhibit the growth of human leukemia cells. Here, we investigated the anticancer activity of the same mixture in 786-O renal cancer cells. QH decreased the generation of reactive oxygen species (ROS) by up to 2.25-fold and increased the antioxidant capacity by up to 3-fold in 786-O cells (3.8-60 μg/ml), whereas IC50 values for viability were 18.2, 18.7 and 11.8 μg/ml, respectively. QH also induced caspase-3 cleavage (2-fold) and increased PARP cleavage. Specificity protein (Sp) transcription factors are overexpressed in cancer cells and regulate genes required for cell proliferation, survival and angiogenesis. QH treatment decreased the expression of Sp1, Sp3 and Sp4 mRNA and this was accompanied by decreased protein expression. Moreover, expression of the Sp-dependent anti-apoptotic survival gene survivin was also significantly reduced, both at the mRNA and protein levels. QH decreased microRNA-27a (miR-27a) and induced the zinc finger protein ZBTB10, an Sp-repressor, suggesting that interactions between QH and the miR-27a-ZBTB10 axis play a role in Sp downregulation. This was confirmed by transfection of cells with a specific mimic for miR-27a, which partially reversed the effects of QH. These findings are consistent with previous studies on botanical anticancer agents in colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.