The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances.
Overexploitation has led to the destruction of resources and endangered ecological environments. Therefore, research for renewable material has become more important in the construction industry. This study used sintered lightweight aggregate made of clay to replace the coarse and fine aggregate and processed aluminum-wastage to make the foaming agents for cement, producing a brand-new extra-lightweight expanded no-fines cellular concrete. The cellular concrete not only utilizes recycled materials, but also produces an environment-friendly, green building material. Validated throughout the experiment, the cellular concrete may provide functions such as fire protection, thermal resistance, and acoustic absorption when used as non-structural material. This paper attempts to evaluate the basic physical properties of cellular concrete by different water/cement ratio (W/C) and agent/cement (A/C) ratio for the coefficients of expansion, compression strengths, and the thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.