Tumor vasculature is hyperpermeable to macromolecules compared to normal vasculature; however, the relationship between tumor hyperpermeability and tumor progression is poorly understood. Here we show that a cell-permeable peptide derived from caveolin-1, termed cavtratin, reduces microvascular hyperpermeability and delays tumor progression in mice. These antipermeability and antitumor actions of cavtratin occur in the absence of direct cytostatic or antiangiogenic effects. Cavtratin blocks microvascular permeability by inhibiting endothelial nitric oxide synthase (eNOS), as the antipermeability and antitumor actions of cavtratin are markedly diminished in eNOS knockout mice. Our results support the concepts that hyperpermeability of tumor blood vessels contributes to tumor progression and that blockade of eNOS may be exploited as a novel target for antitumor therapy.
Human apurinic/apyrimidinic endonuclease (APE1) is an essential enzyme in DNA base excision repair that cuts the DNA backbone immediately adjacent to the 5' side of abasic sites to facilitate repair synthesis by DNA polymerase beta (ref. 1). Mice lacking the murine homologue of APE1 die at an early embryonic stage. Here we report that APE1 has a DNA exonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules. The efficiency of this activity is inversely proportional to the gap size in DNA. In a base excision repair system reconstituted in vitro, the rejoining of nicked mismatched DNA depended on the presence of APE1, indicating that APE1 may increase the fidelity of base excision repair and may represent a new 3' mispaired DNA repair mechanism. The exonuclease activity of APE1 can remove the anti-HIV nucleoside analogues 3'-azido-3'-deoxythymidine and 2',3'-didehydro-2', 3'-dideoxythymidine from DNA, suggesting that APE1 might have an impact on the therapeutic index of antiviral compounds in this category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.