Although the Multi-Level-Cell technique is widely adopted by flashmemory vendors to boost the chip density and to lower the cost, it results in serious performance and reliability problems. Different from the past work, a new cell programming method is proposed to not only significantly improve the chip performance but also reduce the potential bit error rate. In particular, a Single-Level-Cell-like programming style is proposed to better explore the threshold-voltage relationship to denote different Multi-Level-Cell bit information, which in turn drastically provides a larger window of threshold voltage similar to that found in Single-Level-Cell chips. It could result in less programming iterations and simultaneously a much less reliability problem in programming flash-memory cells. In the experiments, the new programming style could accelerate the programming speed up to 742% and even reduce the bit error rate up to 471% for Multi-Level-Cell pages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.