Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase TiO 2 and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system. Key words Ti implant, porous, hydroxyapatite, bioactive, surface treatment.
실험 방법실험에 사용할 시편은 200~250 µm 크기의 Ti 분말
Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants.Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4 and 20 . Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer.Results: Internal pore structure was formed fully open pore. Average pore size and porosity were 10.253 and 17.506%.Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.[Abstract]성 명 김 영 훈
This study was performed to compare mechanical properties for sintering methods of porous Ti implants. Methods: The specimens of Ti implant were fabricated by several sintering methods. One of them is spark plasma sintering(SPS). Another is electro discharge singering(EDS) and the other is high vacuum sintering(HVS). Mechanical properties of porous Ti implants were evaluated by universal testing machine(UTM) and their fracture surface was examined under a sanning electron microscope(SEM). Results: The tensile strength was in a range of 71 to 230 MPa, and Young's modulus was in a range of 11 to 21. It matched with range of cortical bone. Conclusion: Mechanical properties of porous Ti implants were similar to human bone. It was shown that sintering methods of spherical powders can efficiently produce porous Ti implants with various porosities. Porous metals will be commonly used in orthopedic and dental application despite of initial focus has been on bioceramics.
Purpose: This study was performed to investigate the release behavior of bioactive materials as a BMP-2 embedding on the porous titanium implant.Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. Specimens diameter and height were 4 and 10 . Embedding materials were used to stamp ink. Sectional images, porosity and release behavior of porous Ti implants were evaluated by scanning electron microscope(SEM), mercury porosimeter and UV-Vis-NIR spectrophotometer.Results: Internal pore structure was formed fully open pore. Average pore size and porosity were 8.993 and 8.918%. Embedding materials were released continually and slowly.Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. Therefore bioactive materials will be able to embedding to porous Ti implants. If the development of the fusion implant of the bioactive material will be able to have the chance to several patients.[Abstract]
179
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.