Double side light emission devices based on p-NiO/n-ZnO nanowire heterojunctions have been fabricated on indium tin oxide substrate by radio frequency magnetron sputtering combined with hydrothermal process. According to the energy band alignment, the detected broad visible and narrow ultraviolet electroluminescence arise from defect and band edge transitions in ZnO nanowires, respectively. The unique property of the double side emission is due to the nature of the large band gap of NiO film. It provides a good opportunity for the emission of a light emitting device with different colors on the top and back sides, simultaneously.
Surface plasmon in nanoscaled materials has recently attracted a great deal of attention due to its possibility in a wide range of application. From a practical standpoint, it is desirable for the devices having a tunability of surface plasmon frequency. To achieve this goal, in this study, a composite consisting of two-dimensional gold nanoparticles array embedded in elastic polydimethylsiloxane (PDMS) membrane has been synthesized. Because the elastic PDMS membrane has a high malleability, with an external stress, it is very easy to regulate the interparticle distance in the gold nanoparticle array. The change in the distance between each nanoparticle will alter the surface plasmon interaction, and hence surface plasmon frequency can be manipulated. It is found that when the interparticle distance increases, the enhanced surface plasma mutual coupling will cause the blueshift of surface plasmon resonance frequency. The observed result satisfies the forecast based on electromagnetic theory.
In the study of interaction between emissive gold nanoclusters and silver nanoparticles, we explored that the emission of gold nanoclusters is very sensitive to the presence of silver nanoparticles. Quite remarkably, the quenching ratio can reach more than several hundred times. We demonstrate that the underlying mechanism can be attributed to the surface energy transfer with the quenching efficiency following the expression χ = 1/[1 + (d/d
0)4], where d is the distance between gold nanoclusters and silver nanoparticles, and d
0 is the characteristic length of energy transfer. This highly sensitive behavior in the composite consisting of relatively nontoxic gold nanoclusters and silver nanoparticles may find a powerful potential in developing biomedical applications, such as biosensors and drugs delivery.
The ultraviolet random lasing behavior of an ensemble of ZnO nanocombs has been demonstrated. It is found that the Fabry-Perot resonance induced by nanocomb geometry can greatly enhance random lasing action with a low threshold condition. Besides, the emission spectra exhibit few sharp lasing peaks with a full width at half maximum (FWHM) of less than 0.3 nm and a narrow background emission with a FWHM of about 5 nm. Cathodoluminescence mapping images are utilized to analyze the Fabry-Perot resonance phenomenon. The resonant effect on the lasing system is further confirmed by nanocombs with different resonant cavity lengths. The unique lasing behavior induced by the simultaneous occurrence of Fabry-Perot resonance and random laser action shown here may open up a new possibility for the creation of highly efficient light emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.