Due to the reduced gate coupling ratio, the channel Fowler-Nordheim (CFN) programming speed of stacked-gate flash memories with high-permittivity (k) tunnel dielectrics (TDs) is helpless in operation voltage reduction. Although the electric field on high-k tunnel dielectrics is lower than SiO2 tunnel oxide, enhanced impact ionization rate and lower barrier height contribute to higher channel hot-electron (CHE) injection current and efficiency. Consequently, high-k TDs are only effective for the memories programmed with hot electron injection rather than FN tunneling, which is suitable for the NOR-type stacked-gate flash memories.
Channel fluorine implantation (CFI) has been successfully integrated with silicon nitride contact etch stop layer (SiN CESL) to further improve the channel hot electron stress (CHES) and constant voltage stress (CVS) reliability of n-channel metal-oxide-semiconductor field-effect-transistor with HfO2/SiON gate stack. Although the improvement of transconductance, drain current and subthreshold swing due to the fluorine passivation is screened out by the effect of uniaxial tensile strain, the result clearly demonstrates that integrating the CFI process in the SiN CESL-strained device can further suppress the CHES- and CVS-induced threshold voltage shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.