Surveillance of SF6 decomposition products is significant for detection of partial discharge (PD) in gas insulation switchgear (GIS). As a basis in on-site detection and diagnosis, PD early-warning aims to quickly find the abnormalities using a simple and cheap device. In this paper, SO2 is chosen as a feature product and detected through ultraviolet spectroscopy. The derivative method is employed for baseline correction and spectral enhancement. The standard gases of the main decomposition products are qualitatively and quantitatively detected. Then decomposition experiments with different defects are designed to further verify the feasibility. As a stable decomposition product under PD, SO2 is proved to be applicable for PD early-warning in the field. By selecting the appropriate wavelength range, namely 290–310 nm, ultraviolet derivative spectroscopy is sensitive enough to the trace SO2 in the decomposed gas and the interference of other products can be avoided. Fast Fourier transform could be used for feature extraction in qualitative detection. Concentrations of SO2 and other by-products increase with increasing discharge time and could be affected by the discharge energy and PD type. Ultraviolet detection based on SO2 is effective for PD early-warning but the threshold should still be carefully selected in practice.
A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.
RATIONALE: Sulfur hexafluoride (SF 6 ) gas-insulated switchgear (GIS) is an essential piece of electrical equipment in a substation, and the concentration of the SF 6 decomposition products are directly relevant to the security and reliability of the substation. The detection of SF 6 decomposition products can be used to diagnosis the condition of the GIS. METHODS: The decomposition products of SO 2 , SO 2 F 2 , and SOF 2 were selected as indicators for the diagnosis. A suitcase time-of-flight mass spectrometer (TOFMS) was designed to perform online GIS failure analysis. An RF VUV lamp was used as the photoelectron ion source; the sampling inlet, ion einzel lens, and vacuum system were well designed to improve the performance. RESULTS: The limit of detection (LOD) of SO 2 and SO 2 F 2 within 200 s was 1 ppm, and the sensitivity was estimated to be at least 10-fold more sensitive than the previous design. The high linearity of SO 2 , SO 2 F 2 in the range of 5-100 ppm has excellent linear correlation coefficient R 2 at 0.9951 and 0.9889, respectively. CONCLUSIONS: The suitcase TOFMS using orthogonal acceleration and reflecting mass analyzer was developed. It has the size of 663 × 496 × 338 mm and a weight of 34 kg including the battery and consumes only 70 W. The suitcase TOFMS was applied to analyze real decomposition products of SF 6 inside a GIS and succeeded in finding out the hidden dangers. The suitcase TOFMS has wide application prospects for establishing an early-warning for the failure of the GIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.