The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR) proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+)-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes’ expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.
Background. Podocyte migration is actively involved in the process of podocyte loss and proteinuria production, which is closely associated with the development of diabetic nephropathy (DN). Exosomes from adipose-derived stem cells (ADSCs-Exos) effectively inhibit podocyte apoptosis in the treatment of DN. However, how ADSCs-Exos affect the migration of podocytes is obscure. This study is aimed at exploring the regulatory role of ADSCs-Exos on cell migration and the underlying mechanism. Methods. ADSCs-Exo was authenticated by transmission electron microscopy (TEM), western blotting, and flow cytometry. Cell viability and migration ability of podocytes were measured by CCK8 and Transwell assays, respectively. Relative expressions of miRNAs and mRNAs were determined by qRT-PCR. The transmitting between PKH26-labeled exosome and podocytes was evaluated by IF assay. Dual luciferase reporter assay was employed to detect the relationship between miR-215-5p and ZEB2. Results. The exposure to serum from DN patient (hDN-serum) significantly inhibited cell viability of podocytes, but ADSCs-Exo addition notably blunts cytotoxicity induced by the transient stimulus of hDN-serum. Besides, ADSCs-Exo administration powerfully impeded high glucose-(HG-) induced migration and injury of podocyte. With the podocyte dysfunction, several miRNAs presented a significant decline under the treatment of HG including miR-251-5p, miR-879-5p, miR-3066-5p, and miR-7a-5p, all of which were rescued by the addition of ADSCs-Exo. However, only miR-251-5p was a key determinant in the process of ADSCs-Exo-mediated protective role on podocyte damage. The miR-251-5p inhibitor counteracted the improvement from the ADSCs-Exo preparation on HG-induced proliferation inhibition and migration promotion. Additionally, miR-215-5p mimics alone remarkably reversed HG-induced EMT process of podocyte. Mechanistically, we confirmed that ADSCs-Exos mediated the shuttling of miR-215-5p to podocyte, thereby protecting against HG-induced metastasis, possibly through inhibiting the transcription of ZEB2. Conclusion. ADSCs-Exo has the protective effect on HG-evoked EMT progression of podocytes thru a mechanism involving ZEB2. Potentially, the ADSCs-Exo preparation is a useful therapeutic strategy for improving podocyte dysfunction and DN symptoms clinically.
Idiopathic pulmonary fibrosis (IPF) is a prototype of chronic, progressive, and fibrotic lung disease with high morbidity and high mortality. Menstrual blood-derived stem cells (MenSCs) have proven to be an attractive tool for the treatment of acute lung injury and fibrosis-related diseases through immunosuppression and antifibrosis. However, whether MenSC-derived exosomes have the similar function on pulmonary fibrosis remains unclear. In the present study, exosomes secreted from MenSCs (MenSCs-Exo) were verified by transmission electron microscope (TEM), nanoparticle tracking analyzer (NTA), and western blotting. And MenSC-Exo addition significantly improved BLM-induced lung fibrosis and alveolar epithelial cell damage in mice, mainly reflected in BLM-mediated enhancement of the fibrosis score, blue collagen deposition, dry/wet gravity ratio, hydroxyproline and malondialdehyde levels, and downregulation of glutathione peroxidase, which were all robustly reversed by MenSC-Exo management. Additionally, BLM- and TGF-β1-evoked cellular reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, and cell apoptosis were rescued by MenSCs-Exo in vivo and in vitro. Further study indicated that the MenSCs-Exo could transport miRNA Let-7 into recipient alveolar epithelial cells. Let-7 inhibitor administration significantly blocked the exosome-mediated improvement role on lung fibrosis in mice. Mechanistically, Let-7 was able to regulate the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX1) through binding to its 3′-UTR region. Forced expression of LOX1 promoted the expression of apoptosis-related protein and mtDNA damage markers via regulating NLRP3 which was also confirmed in BLM model mice under the combination therapy of the exosome and Let-7 inhibitor. Collectively, this study demonstrates that exosomal Let-7 from MenSCs remits pulmonary fibrosis through regulating ROS, mtDNA damage, and NLRP3 inflammasome activation. This provides a new approach of exocytosis on the treatment of fibrotic lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.