SummaryThis study represents the first genome-wide transcriptomic and lipidomic analysis of H. pluvialis to reveal the regulation of astaxanthin biosynthesis and lipid metabolism during the encystment process under high irradiation.
Cryoprotectants such as antifreeze proteins (AFPs) and sugar molecules may provide a solution for icing problems. These anti-icing substances protect cells and tissues from freezing by inhibiting ice formation. In this study, we developed a method for coating an industrial metal material (aluminum, Al) with AFP from the Antarctic marine diatom, Chaetoceros neogracile (Cn-AFP), to prevent or delay ice formation. To coat Al with Cn-AFP, we used an Al-binding peptide (ABP) as a conjugator and fused it with Cn-AFP. The ABP bound well to the Al and did not considerably change the functional properties of AFP. Cn-AFP-coated Al (Cn-AFP-Al) showed a sufficiently low supercooling point. Additional trehalose coating of Cn-AFP-Al considerably delayed AFP denaturation on the Al without affecting its antifreeze activity. This metal surface–coating method using trehalose-fortified AFP can be applied to other metals important in the aircraft and cold storage fields where anti-icing materials are critical.
The structure and function of the Antarctic marine diatom Chaetoceros neogracile antifreeze protein (Cn-AFP), as well as its expression levels and characteristics of the ice-binding site, were analyzed in the present study. In silico analysis revealed that the Cn-AFP promoter contains both light-and temperatureresponsive elements. Northern and Western blot analyses demonstrated that both Cn-AFP transcript and protein expression were strongly and rapidly stimulated by freezing, as well as temperature and high light stress. Structures of several AFPs have been studied and generally show low similarity among divergent species (8 -10). Crystal structures have been determined for several AFPs, including ␣-helix and globular proteins from fish (11, 12) and -solenoid structures in insects (9), bacteria (13), and a freeze-tolerant grass (10). The ice-binding sites (IBSs) of AFPs have been studied by various methods; they have a flat hydrophobic surface, sometimes with Thr residues (14). Binding to ice surface may involve hydrogen bonding, hydrophobic interactions, and van der Waals interactions. The Thr-X-Thr ice-binding motif (where X means any amino acid residue) has been identified in insect AFPs (14). Unfortunately, it has been difficult to discern the ice-binding mechanism of AFPs due to the complexities of water-ice interactions. Immunogold labeling revealed thatAlthough AFPs or ice-binding proteins (IBPs) have been detected in psychrophilic microalgae, such as psychrophilic green microalgae (2), polar sea ice diatoms (1,3,5), and an Antarctic marine diatom (7)
Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP’s biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP.
Antifreeze proteins (AFPs) play an important role in the psychrophilic adaptation of polar organisms. AFPs encoded by an Antarctic chlorophyte, identified as Pyramimonas gelidicola, were isolated and characterized. Two AFP isoforms were found from cDNAs and their deduced molecular weights were estimated to be 26.4 kDa (Pg-1-AFP) and 27.1 kDa (Pg-2-AFP). Both AFP cDNAs were cloned and expressed in Escherichia coli. The purified recombinant Pg-1-rAFP and Pg-2-rAFP both showed antifreeze activity based on the measurement of thermal hysteresis (TH) and morphological changes to single ice crystals. Pg-1-rAFP shaped ice crystals into a snowflake pattern with a TH value of 0.6 ± 0.02 °C at ~15 mg/ml. Single ice crystals in Pg-2-rAFP showed a dendritic morphology with a TH value of 0.25 ± 0.02 °C at the same protein concentration. Based on in silico protein structure predictions, the three-dimensional structures of P. gelidicola AFPs match those of their homologs found in fungi and bacteria. They fold as a right-handed β-helix flanked by an α-helix. Unlike the hyperactive insect AFPs, the proposed ice-binding site on one of the flat β-helical surfaces is neither regular nor well-conserved. This might be a characteristic of AFPs used for freeze tolerance as opposed to freeze avoidance. A role for P. gelidicola AFPs in freeze tolerance is also consistent with their relatively low TH values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.