The dysregulation of dopamine, a neuromodulator, is associated with a broad spectrum of brain disorders, including Parkinson's disease, addiction, and schizophrenia. Quantitative measurements of dopamine are essential for understanding dopamine functional dynamics. Fast-scan cyclic voltammetry (FSCV) is the most widely used electrochemical technique for measuring real-time in vivo dopamine level changes. Standard FSCV has only been used to analyze "phasic dopamine" (changes in seconds), because the gradual generation of background charging current is inevitable, and acts as the main noise source in the low-frequency band. Although "tonic dopamine" (changes in minutes to hours) is key for understanding the dopamine system, an electrochemical technique capable of simultaneously measuring phasic and tonic dopamine in an in vivo environment has not been established. Several modified voltammetric techniques have been developed for measuring tonic dopamine, but the sampling rates (0.1-0.05 Hz) are too low to be useful. Further investigation of the in vivo applicability of previously developed background drift removal methods for measuring tonic dopamine levels is required. We developed a second-derivative-based background removal (SDBR) method for simultaneously measuring phasic and tonic neurotransmitter levels in real-time. The performance of this technique was tested via in silico and in vitro tonic dopamine experiments. Furthermore, its applicability was tested in vivo. SDBR is a simple, robust, post-processing technique that can extract tonic neurotransmitter levels from all FSCV data. As SDBR is calculated in individual-scan voltammogram units, it can be applied to any real-time closed-loop system that uses a neurotransmitter as a biomarker.
The dysregulation of dopamine, a neuromodulator, is associated with a broad spectrum of brain disorders, including Parkinson’s disease, addiction, and schizophrenia. Quantitative measurements of dopamine are essential for understanding dopamine functional dynamics. Fast-scan cyclic voltammetry (FSCV) is the most widely used electrochemical technique for measuring real-time in vivo dopamine level changes. Standard FSCV has only been used to analyze “phasic dopamine” (changes in seconds), because the gradual generation of background charging current is inevitable, and acts as the main noise source in the low-frequency band. Although “tonic dopamine” (changes in minutes to hours) is key for understanding the dopamine system, an electrochemical technique capable of simultaneously measuring phasic and tonic dopamine in an in vivo environment has not been established. Several modified voltammetric techniques have been developed for measuring tonic dopamine, but the sampling rates (0.1-0.05 Hz) are too low to be useful. Further investigation of the in vivo applicability of previously developed background drift removal methods for measuring tonic dopamine levels is required. We developed a second-derivative-based background removal (SDBR) method for simultaneously measuring phasic and tonic neurotransmitter levels in real-time. The performance of this technique was tested via in silico and in vitro tonic dopamine experiments. Furthermore, its applicability was tested in vivo. SDBR is a simple, robust, post-processing technique that can extract tonic neurotransmitter levels from all FSCV data. As SDBR is calculated in individual-scan voltammogram units, it can be applied to any real-time closed-loop system that uses a neurotransmitter as a biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.