Photochemical escape of atomic oxygen is thought to be one of the dominant channels for Martian atmospheric loss today and played a potentially major role in climate evolution. Mars Atmosphere and Volatile Evolution Mission (MAVEN) is the first mission capable of measuring, in situ, the relevant quantities necessary to calculate photochemical escape fluxes. We utilize 18 months of data from three MAVEN instruments: Langmuir Probe and Waves, Neutral Gas and Ion Mass Spectrometer, and SupraThermal And Thermal Ion Composition. From these data, we calculate altitude profiles of the production rate of hot oxygen atoms from the dissociative recombination of O2+ and the probability that such atoms will escape the Mars atmosphere. From this, we determine escape fluxes for 815 periapsis passes. Derived average dayside hot O escape rates range from 1.2 to 5.5 × 1025 s−1, depending on season and EUV flux, consistent with several pre‐MAVEN predictions and in broad agreement with estimates made with other MAVEN measurements. Hot O escape fluxes do not vary significantly with dayside solar zenith angle or crustal magnetic field strength but depend on CO2 photoionization frequency with a power law whose exponent is 2.6 ± 0.6, an unexpectedly high value which may be partially due to seasonal and geographic sampling. From this dependence and historical EUV measurements over 70 years, we estimate a modern‐era average escape rate of 4.3 × 1025 s−1. Extrapolating this dependence to early solar system, EUV conditions gives total losses of 13, 49, 189, and 483 mbar of oxygen over 1–3 and 3.5 Gyr, respectively, with uncertainties significantly increasing with time in the past.
The Mars Adaptive Mesh Particle Simulator model is coupled with the Mars Global Ionosphere Thermosphere Model for the first time to provide an improved description of the Martian hot O corona based on our modeling studies of O2+ dissociative recombination. A total of 12 cases comprising three solar activity levels and four orbital positions is considered to study the solar cycle and seasonal variability. The newly coupled framework includes two additional thermospheric species and adopts a realistic forward scattering scheme using the angular differential cross sections. We present the effects of these changes on the resulting hot O corona and escape rate. A comparison between the simulated hot O corona and the recent observations from the ALICE/Rosetta instrument showed a reasonable agreement, considering the large uncertainties in the data. We assume that some discrepancies near the transition altitude may be originated from the averaging over the altitude range, where the cold and hot O densities become comparable. The revised O escape rates by our new coupled framework range from ~1.21 × 1025 s−1 to ~5.43 × 1025 s−1.
A comprehensive study of the solar wind interaction with the Martian upper atmosphere is presented. Three global models: the 3‐D Mars multifluid Block Adaptive Tree Solar‐wind Roe Upwind Scheme MHD code (MF‐MHD), the 3‐D Mars Global Ionosphere Thermosphere Model (M‐GITM), and the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M‐AMPS) were used in this study. These models are one‐way coupled; i.e., the MF‐MHD model uses the 3‐D neutral inputs from M‐GITM and the 3‐D hot oxygen corona distribution from M‐AMPS. By adopting this one‐way coupling approach, the Martian upper atmosphere ion escape rates are investigated in detail with the combined variations of crustal field orientation, solar cycle, and Martian seasonal conditions. The calculated ion escape rates are compared with Mars Express observational data and show reasonable agreement. The variations in solar cycles and seasons can affect the ion loss by a factor of ∼3.3 and ∼1.3, respectively. The crustal magnetic field has a shielding effect to protect Mars from solar wind interaction, and this effect is the strongest for perihelion conditions, with the crustal field facing the Sun. Furthermore, the fraction of cold escaping heavy ionospheric molecular ions [(
and/or
)/Total] are inversely proportional to the fraction of the escaping (ionospheric and corona) atomic ion [O+/Total], whereas
and
ion escape fractions show a positive linear correlation since both ion species are ionospheric ions that follow the same escaping path.
In this Letter, we make use of sophisticated 3D numerical simulations to assess the extent of atmospheric ion and photochemical losses from Mars over time. We demonstrate that the atmospheric ion escape rates were significantly higher (by more than two orders of magnitude) in the past at ∼ 4 Ga compared to the present-day value owing to the stronger solar wind and higher ultraviolet fluxes from the young Sun. We found that the photochemical loss of atomic hot oxygen dominates over the total ion loss at the current epoch whilst the atmospheric ion loss is likely much more important at ancient times. We briefly discuss the ensuing implications of high atmospheric ion escape rates in the context of ancient Mars, and exoplanets with similar atmospheric compositions around young solar-type stars and M-dwarfs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.