This study aims to examine the prediction of rainfall and river water debit using the Back Propagation Neural Network (BP-NN) method. Prediction results are classified using the Support Vector Machine (SVM) method to predict flooding. The parameters used to predict rainfall with BP-NN are minimum, maximum and average temperature, average relative humidity, sunshine duration, and average wind speed. The debit of Ular Pulau Tagor river is predicted by BP-NN. BPNN and SVM modeling using software R. Daily climate data from 2015-2017 were taken from three stations, namely Sampali climatology station, Kualanamu meteorological station, and Tuntung geophysics station. Prediction of river water debit is for 6 days and 30 days in the future. The best dataset is a 6 day prediction with a combination of 60% training and 40% testing. Flood prediction accuracy with SVM was 100% in predicting flood events for the next 6 days.
Penelitian ini menggunakan Finite Element Method (FEM) untuk menghitung perubahan salinitas air tanah berdasarkan nilai transmisivitas pada setiap lapisan air tanah. Perubahan Salinitas menggambarkan penurunan kuantitas dan kualitas air tanah akibat dari pembangunan yang merusak lingkungan terutama di daerah pesisir pantai. Pemodelan dan simulasi salinitas air tanah dengan FEM diperoleh head gradient terhadap posisi di titik domain masalah, selanjutnya menghitung perubahan transmisivitasnya. Sensivitas mesh dilakukan dengan mengubah edge dari elemen untuk memperoleh efektifitas dan fleksibilitas dari matriks FEM dua dimensi (2D). Sehingga edge terkecil yang digunakan sebesar 0.1 dan yang terbesar 1 dengan jumlah elemen 14694 dan 157. Transmisivitas dihitung berdasarkan jenis lapisan air tanah pada daerah penelitian, sehingga diperoleh perubahan salinitas sebesar 1.3 % dari salinitas awal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.