This study aims to examine the prediction of rainfall and river water debit using the Back Propagation Neural Network (BP-NN) method. Prediction results are classified using the Support Vector Machine (SVM) method to predict flooding. The parameters used to predict rainfall with BP-NN are minimum, maximum and average temperature, average relative humidity, sunshine duration, and average wind speed. The debit of Ular Pulau Tagor river is predicted by BP-NN. BPNN and SVM modeling using software R. Daily climate data from 2015-2017 were taken from three stations, namely Sampali climatology station, Kualanamu meteorological station, and Tuntung geophysics station. Prediction of river water debit is for 6 days and 30 days in the future. The best dataset is a 6 day prediction with a combination of 60% training and 40% testing. Flood prediction accuracy with SVM was 100% in predicting flood events for the next 6 days.
<span>The use of slang (non-standard language), especially in social media, is increasing. It causes reducing the level of understanding when communicating because not everyone understands slang (non-standard language). The purpose of this work is to develop a slang-word translator. The other objective is to find the minimum number of sentences and </span><span>BiLingual Evaluation Understudy</span><span> (BLEU) score used as a benchmark to determine that the translation is understandable. The approach used in this project is a Phrase-based statistical machine translation (PBSMT) approach, suitable for low resource language, with a dataset of 100,000 sentences taken from the comments column of several online political news portals. The comments are then manually translated to produce a parallel corpus of non-standard language-standard language. The sample sentences are taken from the dataset then distributed using questionnaires to obtain the human understanding level regarding the translation result. The result of the implementation is a BLEU score of 64 and the minimum number of sentences to have an understandable machine translation is 500. The conclusion drawn from the distributed questionnaires is that humans can understand the sentences produced by the translation machine.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.